

Certyfikowany tester ISTQB®

Sylabus poziomu zaawansowanego
Analityk testów (CTAL-TA)

wersja 3.1.2.5.

International Software Testing Qualifications Board®

© Stowarzyszenie Jakości Systemów Informatycznych

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 2 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Informacja o prawach autorskich

Informacja o prawach autorskich © International Software Testing Qualifications Board (zwana dalej
ISTQB®). ISTQB® jest zarejestrowanym znakiem handlowym International Software Testing Qualifications
Board.

Prawa autorskie © 2021-2022 autorzy wersji 3.1.0 sylabusa, erraty 3.1.1. i erraty 3.1.2.: Wim Decoutere,
István Forgács, Matthias Hamburg, Adam Roman, Jan Sabak, Marc-Florian Wendland.

Prawa autorskie © 2019 autorzy wersji 2019 sylabusa: Graham Bath, Judy McKay, Jan Sabak, Erik van
Veenendaal.

Prawa autorskie © 2012 autorzy wersji 2012 sylabusa: Judy McKay, Mike Smith, Erik van Veenendaal.

Wszelkie prawa zastrzeżone.

Autorzy niniejszym przenoszą autorskie prawa majątkowe na ISTQB®. Autorzy (jako obecni posiadacze
autorskich praw majątkowych) oraz ISTQB® (jako przyszły posiadacz autorskich praw majątkowych)
uzgodnili następujące warunki korzystania z dokumentu:

Wyciągi (fragmenty) z niniejszego dokumentu mogą być kopiowane do użytku niekomercyjnego, jeśli
zostanie podane źródło. Każdy akredytowany dostawca szkoleń może wykorzystywać ten sylabus jako
podstawę dla szkolenia, o ile zachowane są informacje o autorach i ISTQB® jako źródle i właścicielach praw
autorskich do sylabusa. Powoływanie się na niniejszy sylabus we wszelkich materiałach reklamowych
i promocyjnych dozwolone jest dopiero po uzyskaniu oficjalnej akredytacji materiałów szkoleniowych
przyznanej przez uznaną przez ISTQB® Radę Krajową. (w przypadku Polski: od Stowarzyszenia Jakości
Systemów Informatycznych) oficjalnej akredytacji materiałów szkoleniowych.

Każda osoba lub grupa osób może używać tego sylabusa jako podstawy dla artykułów i książek, jeśli
autorzy i ISTQB® są wskazani jako źródło i właściciele praw autorskich do sylabusa. Każde inne użycie
sylabusa jest zabronione bez wcześniejszego uzyskania zgody ISTQB®.

Każda Rada Krajowa uznawana przez ISTQB® może przetłumaczyć ten sylabus pod warunkiem, że powieli
i opublikuje wyżej wymienioną informację o prawach autorskich w przetłumaczonej wersji sylabusa.

Tłumaczenie z języka angielskiego wersji beta – BTInfo Biuro Tłumaczeń Informatycznych Przyłuccy Sp. j.
Przeglądy i uaktualnienie do wersji 1.1 przygotował zespół SJSI w składzie: Joanna Kazun, Jan Sabak,
Karolina Sekuła, Lucjan Stapp (kierownik zespołu), Adam Ścierski.
Przeglądy i uaktualnienie do wersji 3.1.0 przygotował zespół SJSI w składzie: Monika Petri-Starego, Adam
Roman, Lucjan Stapp (kierownik zespołu).

Aktualizacja do wersji: 3.1.0.1, 3.1.2.2., 3.1.2.3, 3.1.2.4 oraz 3.1.2.5: Monika Petri-Starego

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 3 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Historia zmian

Wersja Data Uwagi

Wersja 2012 19.10.2012 r. Opublikowanie przez ISTQB®

Wersja 2019 1.0. 18.10.2019 r. Opublikowanie przez ISTQB®

Wersja 2019 1.1. 19.12.2019 r. Opublikowanie przez ISTQB®

Wersja 3.1.0. 03.03.2021 r. Drobne poprawki; przepisanie rozdziału 3.2.3., poprawienie
błędów w tekście

Wersja 3.1.1 15.05.2021 r. Informacja o prawach autorskich została dostosowana do
aktualnych standardów ISTQB®.

Wersja 3.1.2. 31.01.2022 r. Errata: poprawiono drobne błędy formatowania, gramatyki
i słownictwa

Szczegółowy opis zmian w stosunku do poprzedniej wersji sylabusa można znaleźć w nocie wydania
(Release Notes).

Historia zmian wersji polskiej

Wersja Data Uwagi

Wersja 0.1. 01.03.2020 –31.03.2020 r. Tłumaczenie wersji beta BTInfo Biuro Tłumaczeń
Informatycznych Przyłuccy sp. j.

Wersja 1.0. 01.04.2020 – 30.05.2020 r. Przeglądy tłumaczenia – Zespół SJSI

Wersja 2.0. Marzec 2021 r. Dostosowanie polskiego tłumaczenia do angielskiej
wersji 3.1.0 sylabusa

Wersja 3.1.0 12.04.2021 r. Opublikowanie sylabusa

Wersja 3.1.0.1. 07.03.2023 r. Zmiana zasad numeracji wersji sylabusa (ostatnia
cyfra oznacza zmiany w polskiej wersji językowej).
Zmiana tłumaczenia terminu zgodność – poprawiono
na „kompatybilność”: R. 4 – słowa kluczowe, 4.1.
zmiana tego terminu w tabeli charakterystyk
funkcjonalnych, p. 8 zał. A, Indeks.

Wersja 3.1.2.2. 15.05.2023 r. Poprawa tłumaczenia terminu „bezpieczeństwo” na
„zabezpieczenia” w: 3.3.3., 4.1. (lista charakterystyk i
podcharakterystyk jakościowych), 6.3.2., Indeks.
Dostosowanie informacji o prawach autorskich do
aktualnych standardów ISTQB (zgodnie z wersją
3.1.1. oryginału). Poprawienie drobnych błędów
dotyczących słownictwa (zgodnie z wersją 3.1.2.
oryginału). Pozostałe zmiany:
- p. 1.4. drugi akapit z punktorami: było „przedmiotami
testów”, poprawiono na „elementami testów”,
- p. 1.4.2. zmiana treści ósmego akapitu (nt. trudno
dostępnej infrastruktury testowej),
- p. 2.1. oraz p. 2.3. szósta kropka: ostanie zdanie z
„bezpieczeństwie funkcjonalnym” poprawiono na
„bezpieczeństwie”,
- p. 3.2.2. dodano „lub technicznego” punktu widzenia
(w „Obszar zastosowania”, trzecie zdanie),
- p. 3.2.3. zmiana treści 6-go akapitu, zmiana drugiego
zdania w części „Pokrycie”

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 4 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

- 3.2.4. w części „Pokrycie” czwarty akapit wykreślono
„i pokrywające zbiory testów”,
- p. 3.2.7. „testów opartych na scenariuszach”
zastąpiono „testów opartych na doświadczeniu”,
- p. 3.2.8. zmiana treści ostatniego zdania,
- p. 3.4. „pokryciu” zmieniono na „osiągnięciu celów
testów”.
- p. 4.2.5. ankiety i kwestionariusze dotyczące
użyteczności zmieniono na „… dotyczące
użytkowników”,
- p. 4.2.5.1. dodanie zapisów dotyczących aspektów
użyteczności
- p. 5.2.1. „główne zachowanie” zmieniono na
„podstawowe zachowanie”,
- p. 6.1. określenie „automatyzacja oparta na słowach
kluczowych” zastąpiono określeniem „testowanie
oparte….”.
- p. 6.2. zmiana tytułu podrozdziału z „automatyzacja
oparta na słowach kluczowych” na „testowanie oparte
na słowach kluczowych” oraz zmiana z „przypadków
testowych” na „skryptów testowych”
- p. 7.3. w wykazie książek dodano [Mosley93].

Wersja 3.1.2.3 27.07.2023 r. Zmiana tłumaczenia podcharakterystyki jakościowej
z „możliwość ponownego wykorzystania” na „łatwość
ponownego użycia” (w: 4.1.)

Wersja 3.1.2.4. 10.10.2023 r. Zmiana tłumaczenia podcharakterystyk
jakościowych: podlegający analizie – analizowalność,
łatwość ponownego użycia - możliwość ponownego
wykorzystania, estetyka interfejsu użytkownika
(atrakcyjność) – estetyka interfejsu użytkownika (w:
4.1.)

Wersja 3.1.2.5 08.07.2024 r. Aktualizacja tłumaczenia podcharakterystyk
jakościowych – zmiana na „zużycie zasobów” oraz
„łatwość ponownego użycia”.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 5 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Spis treści
Historia zmian .. 3

Historia zmian wersji polskiej... 3

Spis treści .. 5

Podziękowania .. 8

0. Wstęp... 10

0.1. Cel niniejszego sylabusa .. 10

0.2. Certyfikowany tester — poziom zaawansowany w testowaniu oprogramowania 10

0.3. Cele nauczania objęte egzaminem i poziomy poznawcze ... 10

0.4. Egzamin na poziomie zaawansowanym dla analityka testów .. 11

0.5. Wymagania stawiane kandydatom przystępującym do egzaminu ... 11

0.6. Oczekiwane doświadczenie .. 11

0.7. Akredytacja szkoleń .. 11

0.8. Poziom szczegółowości informacji ... 11

0.9. Struktura sylabusa .. 12

1. Zadania analityka testów w procesie testowym — 150 minut ... 13

1.1. Wprowadzenie .. 14

1.2. Testowanie w cyklu wytwarzania oprogramowania .. 14

1.3. Analiza testów ... 16

1.4. Projektowanie testów .. 17

1.4.1. Przypadki testowe niskiego i wysokiego poziomu ... 18

1.4.2. Projektowanie przypadków testowych ... 19

1.5. Implementacja testów ... 20

1.6. Wykonywanie testów .. 22

2. Zadania analityka testów w testowaniu opartym na ryzyku — 60 minut .. 23

2.1. Wprowadzenie .. 24

2.2. Identyfikacja ryzyka ... 24

2.3. Ocena ryzyka .. 25

2.4. Łagodzenie ryzyka .. 25

2.4.1. Ustalanie priorytetów testów .. 26

2.4.2. Dostosowywanie testów na potrzeby przyszłych cykli testowania ... 26

3. Techniki testowania — 630 minut .. 27

3.1. Wprowadzenie .. 28

3.2. Czarnoskrzynkowe techniki testowania .. 28

3.2.1. Podział na klasy równoważności .. 28

3.2.2. Analiza wartości brzegowych ... 30

3.2.3. Testowanie w oparciu o tablicę decyzyjną ... 31

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 6 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

3.2.4. Testowanie przejść pomiędzy stanami .. 33

3.2.5. Technika drzewa klasyfikacji .. 35

3.2.6. Testowanie sposobem par ... 36

3.2.7. Testowanie oparte na przypadkach użycia .. 37

3.2.8. Łączenie technik... 38

3.3. Techniki testowania oparte na doświadczeniu ... 38

3.3.1 Zgadywanie błędów .. 39

3.3.2. Testowanie w oparciu o listę kontrolną .. 40

3.3.3. Testowanie eksploracyjne .. 41

3.3.4. Techniki testowania oparte na defektach ... 42

3.4. Zastosowanie najbardziej odpowiedniej techniki .. 43

4. Testowanie charakterystyk jakościowych oprogramowania — 180 minut ... 44

4.1. Wprowadzenie .. 45

4.2. Charakterystyki jakościowe w testowaniu w dziedzinie biznesowej ... 46

4.2.1. Testowanie poprawności funkcjonalnej ... 46

4.2.2. Testowanie adekwatności funkcjonalnej .. 46

4.2.3. Testowanie kompletności funkcjonalnej ... 47

4.2.4. Testowanie współdziałania .. 47

4.2.5. Ocena użyteczności ... 48

4.2.6. Testowanie przenaszalności .. 50

5. Przeglądy — 120 minut .. 52

5.1. Wprowadzenie .. 53

5.2. Korzystanie z list kontrolnych podczas przeglądów .. 53

5.2.1. Przeglądy wymagań ... 53

5.2.2. Przeglądy historyjek użytkownika .. 54

5.2.3. Dostosowywanie list kontrolnych ... 55

6. Narzędzia testowe i automatyzacja testów — 90 minut ... 56

6.1. Wprowadzenie .. 57

6.2. Testowanie oparte na słowach kluczowych .. 57

6.3. Rodzaje narzędzi testowych ... 58

6.3.1. Narzędzia do projektowania testów ... 58

6.3.2. Narzędzia do przygotowywania danych testowych .. 58

6.3.3 Narzędzia do wykonywania testów automatycznych .. 59

7. Dokumenty pomocnicze ... 60

7.1. Standardy .. 60

7.2. Dokumenty ISTQB® i IREB® ... 60

7.3. Książki i artykuły ... 60

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 7 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

7.4. Inne dokumenty pomocnicze .. 61

8. Załącznik A ... 62

9. Indeks ... 63

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 8 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Podziękowania

Niniejszy dokument został opracowany przez Grupę Roboczą ds. Poziomu Zaawansowanego i
Eksperckiego (Advanced and Expert Level Working Group) działającą w ramach ISTQB® w następującym
składzie: Mette Bruhn-Pedersen (kierownik zespołu), Matthias Hamburg (Product Owner), Wim Decoutere,
István Forgács, Adam Roman, Jan Sabak, Marc-Florian Wendland (autorzy).

Zespół składa podziękowania Paulowi Weymouth i Richardowi Green za redakcję techniczną tekstu,
Garemu Mogyorodi za weryfikację zgodności ze Słownikiem terminów testowych ISTQB®, Radom
Krajowym za sugestie i wskazówki.

W procesie weryfikacji, zgłaszania uwag i głosowania nad niniejszym sylabusem uczestniczyły następujące
osoby: Gery Ágnecz, Armin Born, Chenyifan, Klaudia Dussa-Zieger, Chen Geng (Kevin), Istvan Gercsák,
Richard Green, Ole Chr. Hansen, Zsolt Hargitai, Andreas Hetz, Tobias Horn, Joan Killeen, Attila Kovacs,
Rik Marselis, Marton Matyas, Blair Mo, Gary Mogyorodi, Ingvar Nordström, Tal Pe'er, Palma Polyak, Nishan
Portoyan, Meile Posthuma, Stuart Reid, Murian Song, Péter Sótér, Lucjan Stapp, Benjamin Timmermans,
Chris van Bael, Stephanie van Dijck, Paul Weymouth.

Niniejszy dokument został opublikowany przez ISTQB® w dniu 23 lutego 2021 r.

Następnie Tal Pe'er, Stuart Reid, Marc-Florian Wendland i Matthias Hamburg zasugerowali formalne i
gramatyczne udoskonalenia oraz poprawki w zakresie słownictwa, które zostały wdrożone i opublikowane
w Erracie 3.1.1 i 3.1.2.

Wersja 2019 niniejszego sylabusa została opracowana przez Grupę Roboczą ds. Poziomu
Zaawansowanego w składzie: Graham Bath, Judy McKay, Mike Smith.

W procesie weryfikacji, zgłaszania uwag i głosowania nad sylabusem w wersji 2019 wzięły udział
następujące osoby: Laura Albert, Markus Beck, Henriett Braunné Bokor, Francisca Cano Ortiz, Guo
Chaonian, Wim Decoutere, Milena Donato, Klaudia Dussa-Zieger, Melinda Eckrich-Brajer, Péter Földházi
Jr, David Frei, Chen Geng, Matthias Hamburg, Zsolt Hargitai, Zhai Hongbao, Tobias Horn, Ágota Horváth,
Beata Karpinska, Attila Kovács, József Kreisz, Dietrich Leimsner, Ren Liang, Claire Lohr, Ramit Manohar
Kaul, Rik Marselis, Marton Matyas, Don Mills, Blair Mo, Gary Mogyorodi, Ingvar Nordström, Tal Peer, Pálma
Polyák, Meile Posthuma, Lloyd Roden, Adam Roman, Abhishek Sharma, Péter Sótér, Lucjan Stapp, Andrea
Szabó, Jan te Kock, Benjamin Timmermans, Chris Van Bael, Erik van Veenendaal, Jan Versmissen,
Carsten Weise, Robert Werkhoven, Paul Weymouth.

Wersja 2012 tego sylabusa została opracowana przez podgrupę “zaawansowany analityk testów” Grupy
Roboczej ds. Poziomu Zaawansowanego w składzie: Judy McKay (przewodnicząca), Mike Smith, Erik van
Veenendaal.

W czasie, gdy sylabus w wersji 2012 został ukończony, skład Grupy Roboczej ds. Poziomu
Zaawansowanego był następujący (w kolejności alfabetycznej): Graham Bath, Rex Black, Maria Clara
Choucair, Debra Friedenberg, Bernard Homès (z-ca przewodniczącego), Paul Jorgensen, Judy McKay,
Jamie Mitchell, Thomas Mueller, Klaus Olsen, Kenji Onishi, Meile Posthuma, Eric Riou du Cosquer, Jan
Sabak, Hans Schaefer, Mike Smith (przewodniczący), Geoff Thompson, Erik van Veenendaal, Tsuyoshi
Yumoto.

W procesie weryfikacji, zgłaszania uwag i głosowania nad sylabusem w wersji 2012 uczestniczyły
następujące osoby: Graham Bath, Arne Becher, Rex Black, Piet de Roo, Frans Dijkman, Mats Grindal, Kobi
Halperin, Bernard Homès, Maria Jönsson, Junfei Ma, Eli Margolin, Rik Marselis, Don Mills, Gary Mogyorodi,
Stefan Mohacsi, Reto Mueller, Thomas Mueller, Ingvar Nordstrom, Tal Pe'er, Raluca Madalina Popescu,
Stuart Reid, Jan Sabak, Hans Schaefer, Marco Sogliani, Yaron Tsubery, Hans Weiberg, Paul Weymouth,

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 9 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Chris van Bael, Jurian van der Laar, Stephanie van Dijk, Erik van Veenendaal, Wenqiang Zheng, Debi
Zylbermann.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 10 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

0. Wstęp

0.1. Cel niniejszego sylabusa

Niniejszy sylabus stanowi podstawę egzaminu International Software Testing Qualification Board dla
analityków testów na poziomie zaawansowanym. ISTQB® udostępnia sylabus:

1. Radom Krajowym (National Boards) w celu tłumaczenia na języki lokalne i dokonania akredytacji
dostawców szkoleń (Rady Krajowe mogą dostosowywać sylabus do potrzeb danego języka
i dodawać odwołania do literatury w celu uwzględnienia publikacji lokalnych),

2. komisjom egzaminacyjnym (Exam Boards) jako podstawę do formułowania pytań egzaminacyjnych
w językach lokalnych, odpowiadających celom nauczania danego sylabusa,

3. dostawcom szkoleń w celu opracowania materiałów dydaktycznych i określenia odpowiednich
metod nauczania,

4. kandydatom ubiegającym się o certyfikat w celu przygotowania się do egzaminu (w ramach szkoleń
zorganizowanych lub przygotowania indywidualnego),

5. międzynarodowej społeczności specjalistów w dziedzinie inżynierii oprogramowania i systemów
w celu rozwijania zawodu testera oprogramowania i systemów oraz opracowywania książek
i artykułów.

ISTQB® może zezwolić innym podmiotom na korzystanie z niniejszego sylabusa do innych celów pod
warunkiem wystąpienia przez te podmioty o stosowną pisemną zgodę do ISTQB® i uzyskania jej.

0.2. Certyfikowany tester — poziom zaawansowany w testowaniu
oprogramowania

Kwalifikacja na poziomie zaawansowanym obejmuje w ramach ścieżki głównej trzy odrębne sylabusy
związane z następującymi rolami:

● Kierownik testów
● Analityk testów
● Techniczny analityk testów.

„Wprowadzenie do poziomu zaawansowanego ISTQB®” to oddzielny dokument [ISTQB_AL_OVIEW],
w którym zawarto następujące informacje:

● cele biznesowe dla każdego sylabusa,
● macierz powiązań między celami biznesowymi a celami nauczania,
● podsumowanie każdego sylabusa,
● powiązania między sylabusami.

0.3. Cele nauczania objęte egzaminem i poziomy poznawcze

Cele nauczania wspierają osiąganie celów biznesowych i stanowią wytyczne do formułowania pytań dla
egzaminów certyfikacyjnych „Analityk testów — poziom zaawansowany”.

Poziomy wiedzy związane z poszczególnymi celami nauczania przedstawiono na początku każdego
rozdziału. Poziomy te sklasyfikowano następująco:

● K2: zrozumieć
● K3: zastosować
● K4: przeanalizować.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 11 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Definicje wszystkich terminów wymienionych jako słowa kluczowe pod tytułami rozdziałów należy
zapamiętać (poziom K1), nawet jeśli nie wspomniano o tym wyraźnie w celach nauczania.

0.4. Egzamin na poziomie zaawansowanym dla analityka testów

Zakres egzaminu umożliwiającego uzyskanie certyfikatu analityka testów na poziomie zaawansowanym
opiera się na niniejszym sylabusie. Przy udzielaniu odpowiedzi na pytania egzaminacyjne może być
konieczne skorzystanie z materiału obejmującego więcej niż jeden rozdział tego sylabusa. Przedmiotem
egzaminu może być treść wszystkich części sylabusa z wyjątkiem wstępu i załączników. W dokumencie
znajdują się również odwołania do innych sylabusów ISTQB®, norm/standardów i książek, ale ich treść nie
może być przedmiotem egzaminu w zakresie wykraczającym poza informacje streszczone w samym
sylabusie.

Egzamin ma formę testu wielokrotnego wyboru i składa się z 40 pytań. Do zdania egzaminu niezbędne jest
uzyskanie co najmniej 65% punktów możliwych do uzyskania.

Egzaminy można zdawać w ramach akredytowanego szkolenia lub samodzielnie (np. w ośrodku
egzaminacyjnym lub w ramach egzaminu publicznego). Ukończenie akredytowanego szkolenia nie jest
warunkiem koniecznym przystąpienia do egzaminu.

0.5. Wymagania stawiane kandydatom przystępującym do egzaminu

Przed przystąpieniem do egzaminu certyfikacyjnego dla analityka testów na poziomie zaawansowanym
należy zdać egzamin certyfikacyjny związany z sylabusem „Certyfikowany tester — poziom podstawowy”.

0.6. Oczekiwane doświadczenie

Żaden z celów nauczania określonych dla analityka testów nie zakłada posiadania konkretnego
doświadczenia.

0.7. Akredytacja szkoleń

Rada Krajowa ISTQB® może dokonywać akredytacji dostawców szkoleń, którzy oferują materiały
dydaktyczne zgodne z niniejszym sylabusem. Wytyczne dotyczące akredytacji należy uzyskać od Rady
Krajowej lub organu dokonującego akredytacji. Akredytowane szkolenie jest uznawane za zgodne
z niniejszym sylabusem i może obejmować egzamin ISTQB®.

0.8. Poziom szczegółowości informacji

Poziom szczegółowości informacji zawartych w niniejszym sylabusie umożliwia tworzenie spójnych pod
względem treści nauczania szkoleń i przeprowadzanie egzaminów na skalę międzynarodową. Aby sprostać
temu zadaniu w sylabusie uwzględniono:

● ogólne cele dydaktyczne opisujące założenia poziomu zaawansowanego w odniesieniu do
analityków testów,

● wykaz pojęć, które muszą zapamiętać uczestnicy szkolenia,
● cele nauczania w poszczególnych obszarach wiedzy, opisujące efekty kształcenia o charakterze

poznawczym,
● opis najważniejszych pojęć, w tym odwołania do źródeł (takich jak uznane publikacje oraz normy

lub standardy).
Treść sylabusa nie stanowi opisu całego obszaru wiedzy związanego z testowaniem oprogramowania.
Odzwierciedla ona jedynie poziom szczegółowości, jaki należy uwzględnić w akredytowanych szkoleniach
na poziomie zaawansowanym. W sylabusie skupiono się na zagadnieniach, które mogą mieć zastosowanie

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 12 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

we wszystkich projektach wytwarzania oprogramowania, w tym w projektach zwinnego wytwarzania
oprogramowania. Sylabus nie zawiera żadnych konkretnych celów nauczania związanych z określonym
cyklem wytwarzania oprogramowania, natomiast omówiono w nim, w jaki sposób wprowadzone pojęcia
można zastosować do modelu zwinnego wytwarzania oprogramowania, do innych modeli iteracyjnych
i przyrostowych oraz do modeli sekwencyjnych.

0.9. Struktura sylabusa

Sylabus zawiera sześć rozdziałów, których treść może być przedmiotem egzaminu. Nagłówek najwyższego
poziomu zawiera informację o minimalnym czasie trwania szkolenia dla każdego rozdziału (wykładów
i ćwiczeń) – nie podano czasu trwania podrozdziałów i mniejszych jednostek redakcyjnych. W przypadku
akredytowanych szkoleń na przekazanie wiedzy zawartej w sylabusie potrzeba co najmniej 20 godzin i 30
minut wykładów. Czas ten podzielono na poszczególne rozdziały w następujący sposób:

● Rozdział 1: Zadania analityka testów w procesie testowym (150 minut)
● Rozdział 2: Zadania analityka testów w testowaniu opartym na ryzyku (60 minut)
● Rozdział 3: Techniki testowania (630 minut)
● Rozdział 4: Testowanie charakterystyk jakościowych oprogramowania (180 minut)
● Rozdział 5: Przeglądy (120 minut)
● Rozdział 6: Narzędzia testowe i automatyzacja testów (90 minut).

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 13 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

1. Zadania analityka testów w procesie testowym —
150 minut

Słowa kluczowe
analiza testów, dane testowe, harmonogram testów, implementacja testów, kryterium wyjścia, podstawa

testów, procedura testowa, projekt testów, przypadek testowy niskiego poziomu, przypadek testowy

wysokiego poziomu, test, warunek testowy, wykonywanie testu, zestaw testowy

Cele nauczania związane z zadaniami analityka testów w procesie testowym

1.1. Wstęp
Nie określono celów nauczania.

1.2. Testowanie w cyklu wytwarzania oprogramowania
TA-1.2.1. (K2) Kandydat potrafi wyjaśnić, w jaki sposób i z jakich przyczyn czas i zakres zaangażowania

analityka testów różnią się w różnych modelach cyklu wytwarzania oprogramowania.

1.3. Analiza testów
TA-1.3.1. (K2) Kandydat potrafi omówić zadania, które powinien wykonać analityk testów w trakcie

analizy testów.

1.4. Projektowanie testów
TA-1.4.1. (K2) Kandydat potrafi wyjaśnić, dlaczego interesariusze powinni rozumieć warunki testowe.
TA-1.4.2. (K4) Kandydat potrafi wybrać właściwy poziom projektowania przypadków testowych w danym

scenariuszu projektowym (przypadki testowe wysokiego lub niskiego poziomu).
TA-1.4.3. (K2) Kandydat potrafi omówić zagadnienia, które należy uwzględnić podczas projektowania

przypadków testowych.

1.5. Implementacja testów
TA-1.5.1. (K2) Kandydat potrafi omówić zadania, które powinien wykonać analityk testów w trakcie

implementacji testów.

1.6. Wykonywanie testów
TA-1.6.1. (K2) Kandydat potrafi omówić zadania, które powinien wykonać analityk testów w trakcie

wykonywania testów.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 14 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

1.1. Wprowadzenie

W sylabusie ISTQB® poziomu podstawowego opisano następujące czynności procesu testowego:
● planowanie testów,
● monitorowanie testów i nadzór nad testami,
● analiza testów,
● projektowanie testów,
● implementacja testów,
● wykonywanie testów,
● ukończenie testów.

W niniejszym sylabusie dokładniej opisano czynności, które są szczególnie istotne z punktu widzenia
analityka testów. Pozwala to zwiększyć szczegółowość procesu testowego i lepiej dostosować go do
potrzeb różnych modeli cyklu wytwarzania oprogramowania.

Określenie właściwych testów oraz ich zaprojektowanie, implementacja, a następnie wykonanie, to
najważniejsze obszary działania analityka testów. Zrozumienie pozostałych kroków procesu testowego jest
istotne, ale na ogół praca analityka testów obejmuje przede wszystkim następujące czynności:

● analiza testów,
● projektowanie testów,
● implementacja testów,
● wykonywanie testów.

Inne czynności wchodzące w skład procesu testowego zostały odpowiednio przedstawione w sylabusie
poziomu podstawowego i nie ma potrzeby ich dalszego opisywania na poziomie zaawansowanym.

1.2. Testowanie w cyklu wytwarzania oprogramowania

W ramach definiowania strategii testów należy wziąć pod uwagę stosowany cykl wytwarzania
oprogramowania. Między modelami cyklu wytwarzania oprogramowania istnieją różnice dotyczące
momentu zaangażowania analityka testów, stopnia tego zaangażowania, wymaganego od analityka testów
nakładu czasu, dostępnych dla niego informacji i wreszcie oczekiwań względem osoby występującej w tej
roli. Analityk testów musi wiedzieć, jakie informacje powinien przekazywać osobom pełniącym inne role
w organizacji. Dotyczy to takich obszarów jak:

● inżynieria wymagań i zarządzanie wymaganiami — informacje zwrotne na temat przeglądów
wymagań,

● zarządzanie projektem — informacje wejściowe do harmonogramów,
● zarządzanie konfiguracją i zarządzanie zmianami — wyniki weryfikacji wersji poprzez testowanie,

informacje na temat kontroli wersji,
● wytwarzanie oprogramowania — powiadomienia o znalezionych defektach,
● pielęgnacja oprogramowania — zgłoszenia defektów, efektywność usuwania defektów, testowanie

potwierdzające,
● wsparcie techniczne — dokładne dokumentowanie sposobów ominięcia znanych problemów,
● tworzenie dokumentacji technicznej (np. specyfikacji projektu bazy danych, dokumentacji

środowiska testowego) — informacje wejściowe do tych dokumentów oraz przeglądy techniczne
dokumentów.

Czynności testowe muszą być dostosowane do wybranego modelu cyklu wytwarzania oprogramowania
(SDLC – Software Development Life Cycle), który może mieć charakter sekwencyjny, iteracyjny,
przyrostowy lub stanowić hybrydę tychże. Na przykład w sekwencyjnym modelu V proces testowy

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 15 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

zastosowany na poziomie testów systemowych można dopasować do procesu wytwarzania
oprogramowania w następujący sposób:

● Planowanie testów systemowych odbywa się równolegle z planowaniem projektu, a monitorowanie
testów i nadzór nad testami jest prowadzone do czasu ich ukończenia. Ma to wpływ na informacje
dotyczące harmonogramu działań przekazywane przez analityka testów osobom odpowiedzialnym
za zarządzanie projektem.

● Analiza i projektowanie testów systemowych odbywają się równolegle z tworzeniem takich
dokumentów jak specyfikacja wymagań systemowych, specyfikacja projektu systemu i architektury
(specyfikacja wysokiego poziomu) oraz specyfikacja projektu modułów (specyfikacja niskiego
poziomu).

● Implementacja środowiska testowego dla testów systemowych może się rozpocząć podczas
projektowania systemu, ale główna część prac odbywa się równolegle z kodowaniem i testami
modułowymi, a czynności związane z implementacją testów systemowych często kończą się
zaledwie kilka dni przed rozpoczęciem wykonywania testów systemowych.

● Wykonywanie testów systemowych rozpoczyna się po spełnieniu lub, jeśli to konieczne, podjęciu
decyzji o uchyleniu kryteriów wejścia, co zwykle oznacza, że co najmniej testy modułowe, a często
również testy integracyjne, mają spełnione kryteria wyjścia. Wykonywanie testów systemowych jest
kontynuowane do chwili spełnienia kryteriów wyjścia testów systemowych.

● Czynności związane z ukończeniem testów systemowych wykonywane są po spełnieniu ich
kryteriów wyjścia.

W modelach iteracyjnych i przyrostowych kolejność wykonywania zadań może być inna, a niektóre z nich
mogą się w ogóle nie pojawiać. Na przykład w modelu iteracyjnym w poszczególnych iteracjach może być
stosowany jedynie pewien ograniczony zestaw czynności testowych. Analiza testów, projektowanie,
implementacja i wykonanie mogą być prowadzone w każdej iteracji, natomiast planowanie na wysokim
poziomie odbywa się na początku projektu, a realizacja zadań związanych z ukończeniem testów — na
końcu.

W zwinnym wytwarzaniu oprogramowania zazwyczaj funkcjonują mniej sformalizowane procesy, a kontakty
robocze między interesariuszami projektu są znacznie bliższe, co ułatwia wprowadzanie zmian w projekcie.
W takich projektach może nie występować szczegółowo zdefiniowana rola analityka testów. Dokumentacja
testowa jest mniej obszerna, a wymiana informacji następuje częściej, ma za to węższy zakres.

W zwinnym wytwarzaniu oprogramowania testowanie uwzględnia się już na wstępnych etapach.
Rozpoczyna się ono w fazie wytwarzania produktu, kiedy programiści wykonują wstępne działania związane
z tworzeniem architektury i projektowaniem. Przeglądy raczej nie są sformalizowane, ale odbywają się
w trybie ciągłym wraz z ewolucją oprogramowania. Zaangażowania w prace testowe oczekuje się przez
cały czas trwania projektu, a zadania analityka testów powinni realizować członkowie zespołu.

Modele iteracyjne/przyrostowe pokrywają szeroki zakres modeli wytwarzania oprogramowania — od
zwinnego wytwarzania oprogramowania, w którym oczekuje się ciągłych zmian wraz z ewolucją wymagań
klienta, po modele hybrydowe, np. wytwarzanie iteracyjne/przyrostowe połączone z podejściem modelu V.
W takich modelach hybrydowych analityk testów powinien być zaangażowany w aspekty planowania
i projektowania czynności sekwencyjnych, a następnie przyjąć bardziej interaktywną rolę podczas dalszych
czynności iteracyjnego/przyrostowego wytwarzania.

Niezależnie od stosowanego modelu cyklu wytwarzania oprogramowania analityk testów powinien
rozumieć oczekiwania dotyczące czasu i stopnia zaangażowania w projekt. Analityk testów dostarcza
najbardziej efektywny wkład w jakość oprogramowania poprzez dostosowanie swoich działań i wybór
momentu zaangażowania w określony model cyklu wytwarzania oprogramowania, zamiast dopasowanie
się do predefiniowanej w modelu roli.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 16 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

1.3. Analiza testów

W fazie planowania testów zostaje zdefiniowany zakres projektu testowego. Na etapie analizy testów, na
jego podstawie analityk testów:

● analizuje podstawę testów,
● identyfikuje różne typy defektów w podstawie testów,
● identyfikuje i priorytetyzuje warunki testowe i funkcje, które mają być testowane,
● rejestruje dwukierunkowe powiązania między poszczególnymi elementami podstawy testów

a powiązanymi warunkami testowymi,
● wykonuje zadania związane z testowaniem opartym na ryzyku (patrz Rozdział 2.).

Aby analityk testów mógł efektywnie przeprowadzić analizę testów, powinny być spełnione następujące
kryteria wejścia:

● Istnieje zapis wiedzy (np. wymagania, historyjki użytkownika) na temat przedmiotu testów, który
może stanowić podstawę testów (punkt 1.4.2. i podrozdział 2.2. sylabusa [ISTQB_FL_SYL] zawiera
listę innych możliwych źródeł podstawy testów).

● Taka podstawa testów przeszła przegląd z wystarczająco dobrym wynikiem i została odpowiednio
zmodyfikowana po przeglądzie. Należy zauważyć, że jeśli mają zostać zdefiniowane przypadki
testowe wysokiego poziomu (patrz punkt 1.4.1.), podstawa testów może nie być jeszcze w pełni
zdefiniowana. W zwinnym wytwarzaniu oprogramowania cykl przeglądu będzie mieć charakter
iteracyjny, ponieważ historyjki użytkownika są uszczegóławiane na początku każdej iteracji.

● Zatwierdzone w budżecie środki oraz przyjęty harmonogram pozwalają wykonać pozostałe prace
związane z testowaniem danego przedmiotu testów.

Warunki testowe identyfikuje się z reguły poprzez analizę podstawy testów i celów testowania (zgodnie
z definicją przyjętą w procesie planowania testów). W pewnych sytuacjach, gdy dokumentacja jest
nieaktualna lub nie istnieje, warunki testowe można ustalić po dyskusji z odpowiednimi interesariuszami
(np. w trakcie warsztatów lub podczas planowania iteracji). W zwinnym wytwarzaniu oprogramowania
kryteria akceptacji definiowane w ramach historyjek użytkownika są często wykorzystywane jako podstawa
projektowania testów.

Warunki testowe są zwykle specyficzne dla danego obiektu testowego, analityk testów powinien jednak
uwzględnić pewne standardowe uwarunkowania:

● Zazwyczaj warto definiować warunki testowe na różnych poziomach szczegółowości. Na początku
identyfikuje się warunki wysokiego poziomu w celu określenia ogólnych obszarów testowania, np.
„funkcjonalność ekranu X”. Następnie identyfikuje się bardziej szczegółowe warunki, stanowiące
podstawę przypadków testowych, takie jak „ekran X odrzuca numer konta, który jest o jedną cyfrę
krótszy niż poprawny numer”. Takie hierarchiczne podejście do definiowania warunków testowych
ułatwia zapewnienie odpowiedniego pokrycia obiektów wysokiego poziomu. Umożliwia ono również
analitykowi testów rozpoczęcie pracy nad warunkami testowymi wysokiego poziomu związanymi
z historyjkami użytkownika, które jeszcze nie zostały uszczegółowione.

● Jeżeli zdefiniowano ryzyka produktowe, należy zidentyfikować warunki testowe dotyczące każdego
z czynników ryzyka i powiązać je z odpowiednimi elementami ryzyka.

Zastosowanie technik testowania (określonych w strategii testów i/lub planie testów) może ułatwić
przeprowadzenie czynności analizy testów i może wspierać realizację następujących celów:

● identyfikacja warunków testowych,
● zmniejszenie prawdopodobieństwa pominięcia ważnych warunków testowych,
● zdefiniowanie dokładniejszych i bardziej poprawnych warunków testowych.

Po zdefiniowaniu i uszczegółowieniu warunków testowych należy przeprowadzić ich przegląd z udziałem
interesariuszy, aby zyskać pewność, że wymagania są jednoznacznie zinterpretowane, a proces testowania
odpowiada celom projektu.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 17 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Po zakończeniu analizy testów dla danego obszaru (np. określonej funkcji) analityk testów powinien
wiedzieć, jakie konkretne testy należy zaprojektować w tym obszarze.

1.4. Projektowanie testów

W kolejnym kroku procesu testowego analityk testów projektuje testy, które mają zostać zaimplementowane
i wykonane w ramach zakresu testowania ustalonego podczas planowania testów. Czynności wykonywane
w ramach projektowania testów:

● Określenie, dla których obszarów testowych odpowiednie byłyby przypadki testowe niskiego
poziomu, a dla których przypadki testowe wysokiego poziomu.

● Określenie technik testowania, które pozwolą uzyskać wymagane pokrycie. Techniki, z których
można skorzystać, ustala się w trakcie planowania testów.

● Wykorzystanie technik testowania do zaprojektowania przypadków testowych i zestawów
testowych pokrywających zidentyfikowane warunki testowe.

● Zidentyfikowanie danych testowych niezbędnych do obsługi warunków testowych i przypadków
testowych.

● Zaprojektowanie środowiska testowego oraz zidentyfikowanie wszelkich niezbędnych elementów
infrastruktury, w tym narzędzi.

● Stworzenie możliwości dwukierunkowego śledzenia powiązań (np. między podstawą testów,
warunkami testowymi a przypadkami testowymi).

W całym procesie od analizy i projektowania po implementację i wykonywanie testów należy stosować
kryteria wyznaczania priorytetów ustalone podczas analizy ryzyka i planowania testów.

W zależności od typów projektowanych testów jednym z kryteriów wejścia do fazy projektowania testów
może być dostępność narzędzi wykorzystywanych do projektowania testów.

Podczas projektowania testów analityk testów musi uwzględnić co najmniej następujące zagadnienia:

● W przypadku niektórych elementów testowych lepiej sprawdza się zdefiniowanie tylko warunków
testowych, bez schodzenia do poziomu definiowania skryptów testowych, w których zapisana jest
sekwencja instrukcji niezbędnych do wykonania testu. W takich sytuacjach należy zdefiniować
warunki testowe jako wytyczne do testowania nie-skryptowego (nie opartego na skryptach
testowych).

● Należy jasno określić kryteria zaliczenia i niezaliczenia takiego testu.
● Należy projektować testy tak, aby były zrozumiałe również dla innych testerów, a nie tylko dla

autora. Jeżeli to nie autor będzie wykonywać dany test, inni testerzy będą musieli odczytać
i zrozumieć zdefiniowane testy, aby zrozumieć cele testowania i względną ważność testu.

● Testy muszą być również zrozumiałe dla innych interesariuszy, np. programistów (którzy mogą
dokonywać przeglądów testów) oraz dla audytorów (których akceptacja może być wymagana).

● Testy powinny pokrywać wszelkie interakcje z przedmiotem testów, a nie tylko interakcje
użytkowników za pośrednictwem widocznego interfejsu. Mogą to być na przykład interakcje
z innymi systemami i zdarzenia techniczne lub fizyczne. Więcej informacji na ten temat można
znaleźć w dokumencie [IREB_CPRE].

● Testy należy projektować tak, aby można było przetestować interfejsy między poszczególnymi
elementami testowymi, a także zachowanie poszczególnych elementów testów.

● Podczas projektowania testów należy pamiętać o priorytetach i zrównoważeniu zadań,
z uwzględnieniem poziomów ryzyka i wartości biznesowej.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 18 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

1.4.1. Przypadki testowe niskiego i wysokiego poziomu

Jednym z zadań analityka testów jest ustalenie poziomów przypadków testowych najbardziej odpowiednich
w danej sytuacji. Przypadki testowe niskiego i wysokiego poziomu zostały opisane w dokumencie
[ISTQB_FL_SYL]. Poniżej przedstawiono listy zalet i wad obu rodzajów przypadków testowych.

Zalety przypadków testowych niskiego poziomu:

● Mniej doświadczeni testerzy mogą skorzystać ze szczegółowych informacji dostępnych w projekcie.
Przypadki testowe niskiego poziomu zawierają wszystkie szczegółowe informacje i procedury
potrzebne testerowi do wykonania przypadku testowego (w tym wymagania dotyczące danych) i do
zweryfikowania rzeczywistych rezultatów.

● Testy mogą być ponownie wykonywane przez różne osoby, a każdy z testerów powinien uzyskać
taki sam wynik testu.

● Możliwe jest wykrycie nieoczywistych defektów w podstawie testów.
● Przyjęty poziom szczegółowości umożliwia niezależną weryfikację testów, np. w trakcie audytu, jeśli

to jest wymagane.
● Może to zmniejszyć czas poświęcany na implementację przypadków testowych dla testów

automatycznych.

Wady przypadków testowych niskiego poziomu:

● Zarówno tworzenie, jak i pielęgnacja przypadków testowych tego typu, może wiązać się ze znaczną
pracochłonnością.

● Przypadki testowe niskiego poziomu zwykle ograniczają swobodę działań testera podczas ich
wykonywania.

● Wymagają tego, by podstawa testów została dobrze zdefiniowana.
● Śledzenie powiązań przypadków testowych niskiego poziomu z warunkami testowymi może być

bardziej pracochłonne niż śledzenie powiązań przypadków wysokiego poziomu.

Zalety przypadków testowych wysokiego poziomu:

● Przypadki testowe wysokiego poziomu zawierają wskazówki, co ma zostać przetestowane, a także
umożliwiają analitykowi testów zastosowanie różnych zestawów danych, a nawet procedur
wykonania testu.

● Przypadki testowe wysokiego poziomu mogą zapewnić lepsze pokrycie czynników ryzyka niż
przypadki niskiego poziomu, ponieważ przy każdym wykonaniu będą nieco inne.

● Przypadki tego rodzaju można zdefiniować we wczesnych etapach procesu specyfikowania
wymagań.

● W trakcie wykonywania testów wykorzystywane jest doświadczenie analityka testów związane
zarówno z samym procesem testowania, jak i z przedmiotem testów.

● Przypadki testowe wysokiego poziomu można definiować w sytuacji, gdy nie jest wymagane
opracowanie szczegółowej, formalnej dokumentacji.

● Przypadki testowe wysokiego poziomu lepiej nadają się do wykorzystania w różnych cyklach
testowych, jeśli można użyć różnych danych testowych.

Wady przypadków testowych wysokiego poziomu:

● Przypadki odznaczają się mniejszą powtarzalnością, co utrudnia weryfikację testów. Wynika to
z braku szczegółowego opisu, który występuje w przypadkach testowych niskiego poziomu.

● Do wykonania takich przypadków testowych mogą być potrzebni testerzy z nieco większym
doświadczeniem.

● Jeśli automatyzacja testów odbywa się na podstawie przypadków testowych wysokiego poziomu,
z powodu małej szczegółowości może nastąpić walidacja niepoprawnych rzeczywistych rezultatów,
a ponadto niektóre elementy mogą nie zostać sprawdzone.

Przypadki testowe wysokiego poziomu mogą później posłużyć do tworzenia przypadków niskiego poziomu,
gdy wymagania zostaną ustabilizowane i doprecyzowane. W takiej sytuacji tworzenie przypadków

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 19 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

testowych odbywa się sekwencyjnie z przejściem od przypadków wysokiego poziomu do niskiego poziomu,
a do wykonania testów są używane tylko przypadki testowe niskiego poziomu.

1.4.2. Projektowanie przypadków testowych

Projektowanie przypadków testowych polega na uszczegóławianiu i doprecyzowywaniu zidentyfikowanych
warunków testowych zgodnie z technikami testowania (patrz Rozdział 3.). Przypadki testowe powinny być
powtarzalne, możliwe do weryfikacji i do powiązania z podstawą testów (np. z wymaganiami).

W ramach projektowania przypadków testowych należy zidentyfikować następujące elementy:

● cel (tj. możliwy do zaobserwowania i zmierzenia wynik wykonania testu),
● warunki wstępne, takie jak wymagania projektowe lub wymagania dotyczące lokalnego środowiska

testowego, plany ich dostarczenia, stan systemu przed wykonaniem testu itp.,
● wymagania dotyczące danych testowych (zarówno danych wejściowych do przypadku testowego,

jak i danych, które muszą istnieć w systemie, aby można było wykonać przypadek testowy),
● oczekiwane rezultaty i jawne kryteria zaliczenia/niezaliczenia,
● warunki wyjściowe, takie jak zmodyfikowane dane, na które ma wpływ wykonanie przypadku

testowego, stan systemu po wykonaniu testów, wyzwalacze dalszego przetwarzania itp.

Szczególną trudność może sprawiać zwłaszcza zdefiniowanie oczekiwanego rezultatu testu. Wyznaczanie
go ręcznie jest często uciążliwe i podatne na błędy. W miarę możliwości należy raczej użyć zewnętrznej
automatycznej wyroczni testowej lub stworzyć własną. Określając oczekiwany rezultat, testerzy powinni
odnieść się nie tylko do danych wyjściowych wyświetlanych na ekranie, ale również do warunków
wyjściowych dotyczących danych i środowiska. Przy jasno zdefiniowanej podstawie testów wyznaczenie
prawidłowych rezultatów nie powinno sprawić trudności. Jednak dokumentacja podstawy testów może być
nieprecyzyjna, sprzeczna, nie pokrywać kluczowych obszarów lub w ogóle nie być dostępna. W takich
sytuacjach analityk testów musi dysponować odpowiednią wiedzą dziedzinową lub mieć dostęp do źródła
takiej wiedzy. Jednak nawet wtedy, gdy podstawa testów jest dobrze określona, zdefiniowanie
oczekiwanych rezultatów mogą utrudnić skomplikowane interakcje złożonych zdarzeń wejściowych i reakcji
systemu — nieodzowna jest więc wyrocznia testowa. W zwinnym wytwarzaniu oprogramowania rolę
wyroczni testowej może odgrywać właściciel produktu. Wykonywanie przypadków testowych bez
możliwości sprawdzenia poprawności rzeczywistych rezultatów zwykle nie niesie ze sobą korzyści, a często
powoduje sporządzanie błędnych raportów z testów lub błędne przekonanie o prawidłowym działaniu
systemu.

Powyższe czynności mają zastosowanie na wszystkich poziomach testów, choć podstawa testów jest
w każdej sytuacji inna. Podczas analizy i projektowania testów należy pamiętać zarówno o poziomie, na
jakim ma być wykonywany dany test, jak i o celu testu. Ułatwia to określenie wymaganego poziomu
szczegółowości oraz wszelkich wymaganych narzędzi (np. sterowników i zaślepek na poziomie testów
modułowych).

Podczas opracowywania warunków i przypadków testowych powstaje zazwyczaj dokumentacja, która
stanowi jeden z produktów pracy związanych z testowaniem. W praktyce zakres dokumentowania
produktów pracy związanych z testowaniem bywa bardzo różny. Warunkują to następujące czynniki:

● ryzyko projektowe (co musi / nie musi być udokumentowane),
● wartość dodana dokumentacji w projekcie,
● standardy i uregulowania prawne, których należy przestrzegać,
● zastosowany model cyklu wytwarzania oprogramowania lub podejście (np. w modelu zwinnym dąży

się do generowania „niezbędnego minimum” dokumentacji),
● wymaganie możliwości śledzenia powiązań między podstawą testów a rezultatami analizy

i projektowania testów.

W zależności od zakresu testowania analiza i projektowanie testów mogą obejmować weryfikację
jakościowych charakterystyk oprogramowania. Standard ISO 25010 [ISO25010] stanowi tu przydatny

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 20 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

materiał pomocniczy. Przy testowaniu systemów sprzętowo-programowych może być konieczne
uwzględnienie dodatkowych charakterystyk.

Czynności analizy i projektowania testów można udoskonalić poprzez wplecenie w nie przeglądów i analizy
statycznej. Tak naprawdę przeprowadzanie analizy i projektowania testów same w sobie często stanowią
pewną formę testowania statycznego, ponieważ umożliwiają wykrycie problemów w dokumentach
podstawy testów podczas tych czynności. Analiza i projektowanie testów w oparciu o specyfikację wymagań
są znakomitym przygotowaniem do spotkania przeglądowego (w celu omówienia wymagań). Lektura
wymagań niezbędna do opracowania testów oznacza konieczność zrozumienia wymagania i ustalenia
sposobu sprawdzenia, czy to wymaganie jest spełnione. Dzięki temu często można odkryć brakujące
wymagania oraz wymagania, które są niejasne, nietestowalne lub dla których nie zostały zdefiniowane
kryteria akceptacji. Również produkty pracy związane z testowaniem, takie jak przypadki testowe, analizy
ryzyka i plany testów, mogą być poddawane przeglądom.

Jeśli testowanie wymaga infrastruktury, która nie jest łatwo dostępna, analityk testów powinien zdefiniować
szczegółowe wymagania dotyczące infrastruktury testowej podczas projektowania testu. Jeśli te
wymagania nie zostaną spełnione na czas, wdrożenie testów będzie zagrożone ryzykiem z powodu
nieoczekiwanego czasu i wysiłku.

Należy pamiętać, że infrastruktura testu obejmuje więcej niż tylko przedmioty testów i testalia. Do wymagań
dotyczących infrastruktury mogą należeć wymagania co do pomieszczeń, wyposażenia, personelu,
oprogramowania, narzędzi, urządzeń peryferyjnych i komunikacyjnych, uprawnień dla użytkowników i
wszelkich innych elementów niezbędnych do wykonania testów.

Kryteria wyjścia dla analizy i projektowania testów mogą być różne w zależności od parametrów projektu,
jednak należy rozważyć ujęcie w nich wszystkich elementów omówionych w tym podrozdziale. Istotne jest,
aby kryteria wyjścia były mierzalne i umożliwiały zebranie wszystkich informacji i niezbędnych do wykonania
kolejnych kroków w procesie oraz przeprowadzenie wszystkich niezbędnych przygotowań.

1.5. Implementacja testów

Implementacja testów polega na przygotowaniu testaliów niezbędnych do wykonania testów na podstawie
wyników analizy i projektowania testów. Czynności wykonywane w ramach implementacji testów to:

● Opracowywanie procedur testowych i potencjalnie tworzenie skryptów testów automatycznych.
● Organizowanie procedur testowych i skryptów testów automatycznych (jeśli jakieś istnieją)

w zestawy testowe do wykonania w określonym przebiegu testu.
● Konsultowanie z kierownikiem testów priorytetyzacji przypadków testowych i zestawów testowych

do wykonania.
● Tworzenie harmonogramu wykonywania testów z uwzględnieniem przydziału zasobów, tak aby

było możliwe rozpoczęcie wykonywania przypadków testowych (patrz dokument [ISTQB_FL_SYL],
punkt 5.2.4).

● Finalizacja czynności przygotowania danych testowych i środowisk testowych.
● Aktualizacja powiązań między podstawą testów a testaliami takimi jak: warunki testowe, przypadki

testowe, procedury testowe, skrypty testowe i zestawy testowe.

W trakcie implementacji testów analityk testów identyfikuje skuteczną kolejność wykonywania przypadków
testowych i tworzy procedury testowe.

W ramach tego kroku należy szczegółowo określić ograniczenia i zależności, które mogłyby wymusić
uruchamianie testów w określonym porządku. W procedurach testowych są dokumentowane wszystkie
warunki wstępne (np. ładowanie danych testowych z repozytorium danych) i działania, które należy
wykonać po wykonaniu testów (np. zresetowanie stanu systemu).

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 21 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Analityk testów identyfikuje procedury testowe i skrypty testów automatycznych, które mogą być
pogrupowane (np. wszystkie odnoszą się do testowania konkretnego, wysokopoziomowego procesu
biznesowego) i organizuje je w zestawy testowe. Umożliwia to wspólne testowanie powiązanych
przypadków testowych.

Analityk testów porządkuje zestawy testowe w ramach harmonogramu wykonania testów w sposób, który
skutkuje skutecznym wykonaniem testów. W przypadku zastosowania strategii testów opartej na ryzyku
poziom ryzyka będzie podstawowym czynnikiem w określaniu kolejności wykonywania przypadków
testowych. Kolejność ta może również zależeć od innych czynników, takich jak dostępność odpowiedniego
personelu, sprzętu, danych i testowanych funkcji.

Kod programu często jest publikowany we fragmentach, w związku z czym należy skoordynować testowanie
z kolejnością udostępniania poszczególnych elementów oprogramowania. Szczególnie w przypadku
iteracyjnych i przyrostowych modeli wytwarzania analityk testów powinien koordynować swoje prace
z działaniami zespołu programistów tak, aby elementy oprogramowania były udostępniane do testów
w kolejności umożliwiającej ich przetestowanie.

Poziom szczegółowości warunków testowych i przypadków testowych może wpływać na poziom
szczegółowości i związaną z nim złożoność prac prowadzonych w ramach implementacji testów.
W pewnych przypadkach mają zastosowanie dodatkowe regulacje prawne i produkty związane
z testowaniem powinny wówczas być zgodne z odpowiednimi normami, takimi jak amerykański standard
DO-178C (ED 12C w Europie). [RTCA DO-178C/ED-12C].

Jak wspomniano powyżej, na ogół do testowania potrzebne są dane testowe. W pewnych przypadkach
zestawy danych mogą osiągać duże rozmiary. Podczas implementacji analityk testów tworzy dane
wejściowe i dane środowiskowe, które mają zostać załadowane do baz danych i innych repozytoriów. Dane
muszą być dostosowane do potrzeb procesu testowania, tj. umożliwiać wykrywanie defektów. Analityk
testów może również tworzyć dane, które będą wykorzystywane w testowaniu sterowanym danymi
i testowaniu opartym na słowach kluczowych (patrz podrozdział 6.2.) oraz w testowaniu manualnym.

Implementacja testów obejmuje także tworzenie środowisk(-a) testowych(-ego). W ramach tej czynności
należy w pełni skonfigurować środowisko(-a) testowe i zweryfikować jego (ich) poprawność. Niezbędne jest
środowisko testowe dopasowane do potrzeb testowania, tj. takie, które umożliwi wykrycie defektów w toku
kontrolowanego testowania, będzie działać normalnie w przypadku braku awarii i odpowiednio odzwierciedli
— o ile jest to wymagane — środowisko produkcyjne lub środowisko użytkownika końcowego dla potrzeb
wyższych poziomów testów. Podczas wykonywania testów mogą się okazać konieczne modyfikacje
środowiska testowego spowodowane nieprzewidzianymi zmianami, rezultatami testów lub innymi
uwarunkowaniami. Jeżeli takie modyfikacje zostaną wprowadzone podczas wykonywania testów, należy
ocenić ich wpływ na testy, które już zostały wykonane.

Podczas implementacji testów analityk testów musi potwierdzić dostępność konkretnych osób
odpowiedzialnych za przygotowanie i utrzymanie środowiska testowego, dostępność wszystkich testaliów
oraz gotowość narzędzi testowych i powiązanych procesów do użycia. Dotyczy to zarządzania konfiguracją,
zarządzania defektami oraz logowania wyników testów i zarządzania testami. Ponadto analityk testów musi
zweryfikować procedury gromadzenia danych wykorzystywanych do oceny bieżącego statusu
w odniesieniu do kryteriów wyjścia oraz do raportowania rezultatów testów.

Przy implementacji testów warto zastosować zrównoważone podejście oparte na ustaleniach z fazy
planowania testów. Na przykład analityczną strategię testową opartą na ryzyku często łączy się z reaktywną
strategią testową. W takich sytuacjach pewną część implementacji testów stanowi przygotowanie testów
(tzw. testów swobodnych), w których nie postępuje się zgodnie z wcześniej zdefiniowanymi skryptami.

Testy swobodne (ang. unscripted) nie powinny być przypadkowe ani pozbawione określonego celu, gdyż
wtedy trudno określić ich czas trwania i uzyskane pokrycie, a to wiąże się z niewielką liczbą wykrywanych

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 22 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

defektów. Należy je przeprowadzać w sesjach o określonych ramach czasowych i ustalić wstępny przebieg
za pomocą karty opisu testu, jednak trzeba zachować możliwość odejścia od zaleceń podanych w karcie,
jeśli w trakcie sesji zostaną zidentyfikowane potencjalnie bardziej produktywne możliwości testowania. Na
przestrzeni lat praktycy opracowali szereg technik testowania opartych na doświadczeniu, takich jak ataki
usterek [Whittaker03], zgadywanie błędów [Myers11] i testowanie eksploracyjne [Whittaker09]. Takie
podejścia nie eliminują analizy, projektowania i implementacji testów, ale czynności te są realizowane
w dużej mierze podczas wykonywania testów.

Jeśli stosowane są takie reaktywne strategie testowe, rezultaty każdego testu mają wpływ na analizę,
projektowanie i implementację kolejnych testów. Strategie tego rodzaju co prawda wymagają mniejszego
nakładu pracy i często umożliwiają efektywne wykrywanie defektów, mają jednak również wady, między
innymi takie jak:

● wymagają od analityka testów wiedzy specjalistycznej,
● trudno przewidzieć czas ich trwania,
● trudno sprawdzić uzyskane pokrycie,
● ich powtarzalność może być bardzo ograniczona bez wsparcia solidnej dokumentacji lub wsparcia

ze strony narzędzi.

1.6. Wykonywanie testów

Testy wykonywane są zgodnie z harmonogramem wykonywania testów. Obejmuje to następujące działania
(patrz dokument [ISTQB_FL_SYL]):

● wykonywanie testów manualnych, w tym testowanie eksploracyjne,
● wykonywanie testów automatycznych,
● porównywanie rzeczywistych rezultatów z oczekiwanymi,
● analizowanie anomalii w celu ustalenia ich prawdopodobnych przyczyn,
● zgłaszanie defektów na podstawie zaobserwowanych awarii,
● rejestrowanie rzeczywistych rezultatów wykonania testów,
● aktualizacja powiązań między podstawą testów a testaliami, z uwzględnieniem rezultatów testów,
● wykonywanie testów regresji.

Wymienione powyżej zadania może realizować zarówno tester, jak i analityk testów.

Poniżej przedstawiono listę typowych zadań dodatkowych, które mogą być wykonywane przez analityka
testów:

● identyfikowanie skupisk defektów, które mogą oznaczać konieczność dodatkowego przetestowania
pewnego fragmentu przedmiotu testów,

● zgłaszanie propozycji przyszłych sesji testowania eksploracyjnego na podstawie odkryć
z dotychczasowych testów eksploracyjnych,

● identyfikowanie nowych czynników ryzyka na podstawie informacji uzyskanych podczas
realizowania zadań związanych z wykonywaniem testów,

● zgłaszanie propozycji udoskonalenia wybranych produktów pracy z etapu implementacji testów (np.
poprawienia procedur testowych).

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 23 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

2. Zadania analityka testów w testowaniu opartym na
ryzyku — 60 minut

Słowa kluczowe
identyfikacja ryzyka, łagodzenie ryzyka, ryzyko produktowe, testowanie oparte na ryzyku

Cele nauczania związane z zadaniami analityka testów w testowaniu opartym na
ryzyku

Zadania analityka testów w testowaniu opartym na ryzyku

TA-2.1.1. (K3) Kandydat potrafi zidentyfikować czynniki ryzyka dla podanej sytuacji, dokonać oceny

ryzyka i zaproponować odpowiednie środki łagodzenia ryzyka.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 24 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

2.1. Wprowadzenie

Kierownik testów często jest całkowicie odpowiedzialny za ustanowienie oraz zarządzanie strategią testów
opartą na ryzyku. Kierownik testów zwykle angażuje analityka testów w prace nad zapewnieniem poprawnej
implementacji podejścia opartego na ryzyku.

Analityk testów powinien być czynnie zaangażowany w następujące czynności związane z testowaniem
opartym na ryzyku:

● identyfikację ryzyka,
● ocenę ryzyka,
● łagodzenie ryzyka.

Te zadania są wykonywane iteracyjnie na przestrzeni całego cyklu wytwarzania oprogramowania, tak aby
zespół projektowy mógł reagować na pojawiające się czynniki ryzyka i zmianę ich priorytetów oraz
regularnie oceniać status ryzyka i informować o nim interesariuszy (dodatkowe informacje można znaleźć
w publikacjach [vanVeenendaal12] i [Black02]). W zwinnym wytwarzaniu oprogramowania trzy wspomniane
czynności są często łączone w ramach tzw. sesji zarządzania ryzykiem, które koncentrują się na danej
iteracji lub wydaniu.

Analityk testów powinien działać w ramach struktury testowania opartego na ryzyku zbudowanej przez
kierownika testów dla potrzeb danego projektu. Powinien przy tym korzystać ze swojej znajomości
czynników ryzyka w danej dziedzinie biznesowej, które mogą pojawić się w projekcie, takich jak czynniki
ryzyka związane z bezpieczeństwem, kwestiami biznesowymi i ekonomicznymi oraz czynnikami
politycznymi.

2.2. Identyfikacja ryzyka

W procesie identyfikacji ryzyka szanse na wykrycie jak największej liczby potencjalnych istotnych czynników
ryzyka są tym większe, im większa grupa interesariuszy weźmie w nim udział.

Analitycy testów często dysponują unikatową wiedzą dotyczącą dziedziny biznesowej testowanego
systemu, dlatego są szczególnie predysponowani do wykonywania pewnych zadań, takich jak:

● prowadzenie wywiadów z ekspertami z danej dziedziny i użytkownikami,
● dokonywanie samodzielnych ocen,
● korzystanie z szablonów ryzyka,
● udział w warsztatach dotyczących ryzyka,
● udział w sesjach „burzy mózgów” z obecnymi i potencjalnymi użytkownikami,
● definiowanie list kontrolnych do testowania,
● korzystanie z wcześniejszych doświadczeń z podobnymi systemami lub projektami.

Analityk testów powinien przede wszystkim ściśle współpracować z użytkownikami i innymi ekspertami
z danej dziedziny (np. specjalistami w dziedzinie inżynierii wymagań i analitykami biznesowymi), aby ustalić,
które obszary ryzyka biznesowego powinny zostać uwzględnione podczas testowania. W zwinnym
wytwarzaniu oprogramowania, dzięki bliskim kontaktom z interesariuszami, można regularnie prowadzić
działania związane z identyfikacją ryzyka, np. w trakcie spotkań dotyczących planowania iteracji.

Przykłady czynników ryzyka, które mogą zostać zidentyfikowane w projekcie, to:

● problemy z poprawnością funkcjonalną, np. niepoprawne obliczenia,
● problemy z użytecznością, np. brak potrzebnych skrótów klawiszowych,
● problemy z przenaszalnością, np. brak możliwości zainstalowania aplikacji na określonych

platformach.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 25 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

2.3. Ocena ryzyka

Podczas gdy identyfikacja ryzyka polega na wskazaniu jak największej liczby istotnych ryzyk, ocena ryzyka
jest analizą tych zidentyfikowanych ryzyk. W szczególności obejmuje ona kategoryzację każdego ryzyka
oraz określenie poziomu tegoż ryzyka.

Określenie poziomu ryzyka obejmuje z reguły ocenę (dla każdego elementu ryzyka) jego
prawdopodobieństwa i wpływu. Prawdopodobieństwo ryzyka zwykle jest rozumiane jako
prawdopodobieństwo, że dany, potencjalny problem, istnieje w testowanym systemie i zostanie
zaobserwowany w działaniu produkcyjnym tego systemu. Wkład technicznego analityka testów powinien
polegać na wyszukiwaniu czynników ryzyka i określaniu prawdopodobieństwa ich wystąpienia, a wkład
analityka testów — na ocenie potencjalnego wpływu biznesowego wystąpienia danego problemu
(w zwinnym wytwarzaniu oprogramowania takie rozróżnienie pomiędzy rolami może być mniej ścisłe).

Wpływ ryzyka jest często rozumiany jako wielkość szkody wpływającej na użytkowników, klientów lub
innych interesariuszy. Wywodzi się on zatem z ryzyka biznesowego. Wkład analityka testów powinien
polegać na identyfikowaniu dziedziny biznesowej oraz ocenianiu potencjalnego wpływu poszczególnych
czynników ryzyka na użytkowników. Do czynników wpływających na ryzyko biznesowe należą m. in.:

● częstotliwość używania dotkniętej ryzykiem funkcji,
● straty biznesowe,
● straty finansowe,
● potencjalne straty lub obciążenia środowiskowe albo społeczne,
● konsekwencje prawne, cywilne lub karne,
● kwestie związane z bezpieczeństwem,
● grzywny, utrata licencji,
● brak uzasadnionych technicznie i ekonomicznie sposobów ominięcia problemu w przypadku braku

możliwości kontynuowania pracy,
● widoczność funkcji,
● widoczność awarii, prowadząca do negatywnego rozgłosu i potencjalnej utraty reputacji,
● utrata klientów.

Na podstawie dostępnych informacji o ryzyku analityk testów wyznacza poziom ryzyka biznesowego według
wytycznych określonych przez kierownika testów. Poziomy mogą być określone przy wykorzystaniu skali
porządkowej (np. liczb rzeczywistych, poziomów: niski/średni/wysoki, kolorów sygnalizacji świetlnej). Od
momentu, gdy prawdopodobieństwo ryzyka i wpływ ryzyka zostały wyznaczone, kierownik testów korzysta
z tych wartości w celu określenia poziomu ryzyka dla każdego elementu ryzyka. Ten poziom ryzyka jest
następnie wykorzystywany do priorytetyzacji czynności łagodzenia ryzyka [vanVeenendaal 12].

2.4. Łagodzenie ryzyka

W czasie trwania projektu analityk testów powinien stawiać sobie następujące cele:
● Zmniejszenie ryzyka produktowego poprzez zastosowanie dobrze zaprojektowanych przypadków

testowych, które jednoznacznie wykazują, czy testy zostały zaliczone czy niezaliczone, oraz
poprzez uczestnictwo w przeglądach produktów pracy związanych z oprogramowaniem, takich jak
wymagania, projekty i dokumentacja dla użytkowników.

● Podejmowanie właściwych działań łagodzących ryzyko wskazanych w strategii testów i planie
testów (np. testowanie procesu biznesowego związanego ze szczególnie dużym ryzykiem,
z zastosowaniem konkretnych technik testowania).

● Ponowna ocena znanych czynników ryzyka w oparciu o dodatkowe informacje zgromadzone w toku
projektu, korygowanie wielkości prawdopodobieństwa ryzyka, wpływu ryzyka lub obu tych wartości.

● Identyfikowanie nowych czynników ryzyka na podstawie informacji zgromadzonych podczas
testowania.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 26 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Testowanie ma podstawowy wkład w łagodzenie ryzyka produktowego. Poprzez wykrywanie defektów
testerzy zmniejszają ryzyko, informując o istnieniu wykrytych defektów i umożliwiając ich usunięcie przed
wydaniem oprogramowania. Jeżeli testerzy nie znajdują żadnych defektów, testowanie zmniejsza ryzyko
poprzez zapewnienie, że w pewnych warunkach (warunkach, w jakich wykonano testy) system działa
prawidłowo. Analityk testów pomaga określić możliwości łagodzenia ryzyka m.in. poprzez badanie
możliwości gromadzenia dokładnych danych testowych, tworzenie i weryfikowanie realistycznych
scenariuszy użycia oraz prowadzenie lub nadzorowanie badań użyteczności.

2.4.1. Ustalanie priorytetów testów

Poziom ryzyka jest również wykorzystywany do ustalania priorytetów testów. Analityk testów może na
przykład ustalić, że istnieje wysokie ryzyko w obszarze dokładności transakcji w systemie księgowym. Aby
złagodzić to ryzyko, tester może podjąć współpracę z ekspertami biznesowymi i zgromadzić zestaw dobrych
danych przykładowych, które można przetworzyć w celu weryfikacji dokładności wyników przetwarzania.
Analityk testów może także stwierdzić, że poważne ryzyko w nowym produkcie stanowią problemy
z użytecznością. Zamiast czekać na wykrycie problemów podczas testów akceptacyjnych wykonywanych
przez użytkowników, analityk testów może przeprowadzić wczesny test użyteczności o wysokim priorytecie
z wykorzystaniem prototypu, co pozwoli zidentyfikować i usunąć problemy jeszcze przed rozpoczęciem
testów akceptacyjnych. Priorytety testów należy rozważyć we wczesnych fazach planowania, tak, aby
dopasować harmonogram do priorytetów testów i wykonać niezbędne testy w odpowiednim momencie.

W niektórych przypadkach wszystkie testy czynników wysokiego ryzyka są wykonywane przed testami
czynników niższego ryzyka, a wykonywanie odbywa się w kolejności ściśle związanej z oceną ryzyka
(podejście „w głąb” (ang. depth-first)); w innych sytuacjach wybiera się próbkę testów reprezentujących
wszystkie zidentyfikowane obszary ryzyka, ważoną według wartości poziomu ryzyka, aby zapewnić
pokrycie każdego czynnika przynajmniej jednym testem (podejście „wszerz” (ang. breadth-first)).

Bez względu na to, czy testowanie oparte na ryzyku odbywa się według podejścia "w głąb" czy "wszerz",
czas przeznaczony na testowanie może nie wystarczyć na wykonanie wszystkich testów. Testowanie oparte
na ryzyku umożliwia testerom złożenie kierownictwu raportu podsumowującego pozostały w danym
momencie poziom ryzyka, a kierownictwu — podjęcie decyzji, czy przedłużyć testy, czy też przenieść
pozostałe ryzyko na użytkowników, klientów, personel wsparcia technicznego i/lub personel operacyjny.

2.4.2. Dostosowywanie testów na potrzeby przyszłych cykli testowania

Ocena ryzyka nie jest jednorazowym działaniem wykonywanym przed rozpoczęciem implementacji testów,
ale stanowi ciągły proces. Każdy planowany w przyszłości cykl testowy powinien wiązać się z nową analizą
ryzyka, aby uwzględnić takie czynniki jak:

● dowolne nowe lub istotnie zmienione czynniki ryzyka produktowego,
● niestabilne lub podatne na awarie obszary systemu wykryte podczas testowania,
● czynniki ryzyka związane z usuniętymi defektami,
● typowe defekty wykrywane podczas testowania,
● słabo przetestowane obszary (słabo pokryte wymaganiami).

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 27 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

3. Techniki testowania — 630 minut

Słowa kluczowe
analiza wartości brzegowych, czarnoskrzynkowa technika testowania, karta opisu testu, podział na klasy

równoważności, taksonomia defektów, technika drzewa klasyfikacji, technika testowania oparta na

defektach, technika testowania oparta na doświadczeniu, testowanie eksploracyjne, testowanie w oparciu

o doświadczenie, testowanie przejść pomiędzy stanami, testowanie sposobem par, testowanie w oparciu

o listę kontrolną, testowanie w oparciu o tablicę decyzyjną, zgadywanie błędów

Cele nauczania — techniki testowania

3.1. Wprowadzenie
Nie określono celów nauczania.

3.2. Czarnoskrzynkowe techniki testowania

TA-3.2.1. (K4) Kandydat potrafi przeanalizować podane elementy specyfikacji i zaprojektować przypadki

testowe korzystając z techniki podziału na klasy równoważności.
TA-3.2.2. (K4) Kandydat potrafi przeanalizować podane elementy specyfikacji i zaprojektować przypadki

testowe korzystając z techniki analizy wartości brzegowych.
TA-3.2.3. (K4) Kandydat potrafi przeanalizować podane elementy specyfikacji i zaprojektować przypadki

testowe korzystając z techniki testowania w oparciu o tablicę decyzyjną.
TA-3.2.4. (K4) Kandydat potrafi przeanalizować podane elementy specyfikacji i zaprojektować przypadki

testowe korzystając z techniki testowania przejść pomiędzy stanami.
TA-3.2.5. (K2) Kandydat potrafi omówić rolę diagramów drzewa klasyfikacji wspierających techniki

testowania.
TA-3.2.6. (K4) Kandydat potrafi przeanalizować podane elementy specyfikacji i zaprojektować przypadki

testowe korzystając z techniki testowania sposobem par.
TA-3.2.7. (K4) Kandydat potrafi przeanalizować podane elementy specyfikacji i zaprojektować przypadki

testowe korzystając z techniki testowania opartego na przypadkach użycia.
TA-3.2.8. (K4) Kandydat potrafi przeanalizować system (lub jego specyfikację wymagań) w celu

ustalenia, jakie typy defektów zostaną w nim prawdopodobnie znalezione i potrafi wybrać
odpowiednie czarnoskrzynkowe techniki testowania.

3.3 Techniki testowania oparte na doświadczeniu

TA-3.3.1. (K2) Kandydat potrafi opisać zasady technik testowania opartych na doświadczeniu oraz

wskazać ich wady i zalety w porównaniu z technikami czarnoskrzynkowymi oraz technikami
opartymi na defektach.

TA-3.3.2. (K3) Kandydat potrafi zidentyfikować testy eksploracyjne dla danego scenariusza.
TA-3.3.3. (K2) Kandydat potrafi opisać zastosowanie technik testowania opartych na defektach i wskazać

różnice między ich zastosowaniem a zastosowaniem technik czarnoskrzynkowych.

3.4. Zastosowanie najbardziej odpowiednich technik testowania

TA-3.4.1. (K4) Kandydat potrafi określić, dla podanej sytuacji projektowej, jakie czarnoskrzynkowe lub

oparte na doświadczeniu techniki testowania należy zastosować, aby osiągnąć konkretne cele.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 28 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

3.1. Wprowadzenie

Techniki testowania opisane w tym rozdziale dzielą się na następujące kategorie:
● czarnoskrzynkowe,
● oparte na doświadczeniu.

Obie kategorie technik uzupełniają się i mogą być stosowane jako odpowiednie dla dowolnej, podanej
czynności testowej, w testowaniu na dowolnym poziomie testów, w zależności od potrzeb.

Należy zauważyć, że oba rodzaje technik można stosować w testowaniu zarówno funkcjonalnych, jak
i niefunkcjonalnych charakterystyk jakościowych. Testowanie charakterystyk oprogramowania zostało
opisane w następnym rozdziale.

Techniki testowania opisane w poniższych podrozdziałach mają za cel ustalenie optymalnych danych
testowych (np. na podstawie klas równoważności) lub wyprowadzanie procedur testowych (np. na
podstawie modeli stanów). Z reguły przy tworzeniu kompletnych przypadków testowych łączy się ze sobą
różne techniki.

3.2. Czarnoskrzynkowe techniki testowania

Czarnoskrzynkowe techniki testowania zostały przedstawione w sylabusie ISTQB® poziomu podstawowego
[ISTQB_FL_SYL].

Najważniejsze wspólne cechy czarnoskrzynkowych technik testowania:

● podczas projektowania testów są tworzone modele zgodne z techniką testowania, np. diagramy
przejść pomiędzy stanami, tablice decyzyjne itp.,

● warunki testowe są systematycznie wyprowadzane z tych modeli.

Techniki testowania określają zwykle kryteria pokrycia, za pomocą których można mierzyć czynności
związane z projektowaniem i wykonywaniem testów. Całkowite spełnienie kryteriów pokrycia nie oznacza,
że cały zestaw testowy jest kompletny, a jedynie to, że z danego modelu nie można już wywieść więcej
testów umożliwiających zwiększenie pokrycia w oparciu o przyjętą technikę.

Testowanie czarnoskrzynkowe zwykle opiera się na dokumentacji zawierającej specyfikację rozwiązania,
np. specyfikację wymagań lub historyjki użytkownika. Dokumentacja taka powinna określać zachowanie
systemu, zwłaszcza w zakresie funkcjonalności, zatem zwykle elementem procesu testowania zachowania
systemu jest wyprowadzanie testów z wymagań. W pewnych sytuacjach dokumentacja specyfikacji może
nie być dostępna, ale istnieją wymagania, które można wywnioskować, takie jak zastąpienie funkcjonalności
wcześniejszego systemu.

Istnieje szereg czarnoskrzynkowych technik testowania. Techniki te są przeznaczone do różnych rodzajów
oprogramowania i scenariuszy zastosowania. Poniżej opisano możliwości zastosowania poszczególnych
technik wraz z ograniczeniami i trudnościami, na jakie może się natknąć analityk testów, metody pomiaru
pokrycia oraz typy defektów, na jakie ukierunkowana jest dana technika.

Dodatkowe informacje można znaleźć w publikacjach [ISO29119-4], [Bath14], [Beizer95], [Black07],
[Black09], [Copeland04], [Craig02], [Forgács19], [Koomen06], [Myers11] i [Roman18].

3.2.1. Podział na klasy równoważności

Technika podziału na klasy równoważności jest używana do zmniejszenia liczby przypadków testowych
wymaganych do efektywnego przetestowania obsługi danych wejściowych, wyjściowych, wartości
wewnętrznych i wartości uwarunkowanych czasowo. W procesie podziału powstają klasy równoważności,
czyli zbiory wartości, które powinny być przetwarzane w taki sam sposób. Przyjmuje się, że w przypadku

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 29 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

wybrania jednej reprezentatywnej wartości z danej klasy jest zapewnione pokrycie wszystkich elementów
tej klasy.

Zazwyczaj zachowanie przedmiotu testów determinuje nie jeden, a kilka parametrów. W przypadku łączenia
w ramach przypadków testowych klas równoważności zdefiniowanych dla kilku parametrów mogą być
stosowane różne techniki.

Obszar zastosowania
Tę technikę można stosować na każdym poziomie testów w sytuacjach, gdy wszystkie elementy zbioru
wartości do przetestowania mają zostać przetworzone w taki sam sposób i gdy zbiory wartości używanych
przez aplikację nie wchodzą ze sobą w interakcję. Klasą równoważności może być dowolny niepusty zbiór
wartości, w szczególności może to być zbiór uporządkowany, nieuporządkowany, dyskretny, ciągły,
nieskończony, skończony lub nawet zbiór jednoelementowy. Dobór zbiorów wartości dotyczy zarówno
poprawnych, jak i niepoprawnych klas (tzn. klas zawierających wartości, które są uznawane za niepoprawne
w przypadku testowanego oprogramowania).

Ta technika sprawdza się najlepiej w połączeniu z analizą wartości brzegowych, która rozszerza listę
testowanych wartości o wartości brzegowe klas równoważności. Podział na klasy równoważności
i wykorzystanie wartości z poprawnych klas to typowa technika używana w testach dymnych nowej wersji
lub nowego wydania oprogramowania, ponieważ umożliwia szybkie ustalenie, czy działają podstawowe
funkcje.

Ograniczenia/trudności
Jeżeli założenia dotyczące równoważności są niepoprawne i nie wszystkie wartości w poszczególnych
zbiorach są przetwarzane w taki sam sposób, zastosowanie tej techniki może nie wystarczyć do
wychwycenia defektów. Ważne jest również staranne dobieranie klas. Na przykład pole formularza,
w którym podaje się liczby ujemne lub dodatnie, mogłoby być przetestowane lepiej dla dwóch klas danych
poprawnych: osobno dla liczb dodatnich i ujemnych, ze względu na możliwe odmienne przetwarzanie.
W zależności od tego, czy wartość „zero” jest dozwolona, czy nie, może ona stać się kolejną klasą
równoważności. Aby dobrać najlepsze klasy równoważności, analityk testów powinien rozumieć
przetwarzanie związane z przedmiotem testów. Może to oznaczać konieczność uzyskania wyjaśnień
dotyczących struktury kodu.

Analityk testów powinien również wziąć pod uwagę możliwe zależności pomiędzy klasami równoważności
dla różnych parametrów. Na przykład, w systemie rezerwacji lotów parametr „opiekun” może być użyty
jedynie w kombinacji z klasą „dziecko” dla parametru określającego wiek pasażera.

Pokrycie
Pokrycie ustala się poprzez podzielenie liczby klas, dla których przetestowano przynajmniej jedną wartość,
przez liczbę wszystkich zidentyfikowanych klas. Pokrycie klas równoważności podaje się jako wartość
procentową. Użycie kilku wartości z jednej klasy nie zwiększa pokrycia w ujęciu procentowym.

Jeśli zachowanie przedmiotu testów zależy od jednego parametru, każda klasa równoważności, zarówno
poprawna jak i niepoprawna, powinna być pokryta przynajmniej raz.

W przypadku więcej niż jednego parametru analityk testów powinien wybrać proste lub kombinatoryczne
pokrycie, zależnie od poziomu ryzyka [Offutt16]. Istotne jest zatem rozróżnienie pomiędzy kombinacjami
zawierającymi jedynie wartości z klas poprawnych, a kombinacjami zawierającymi jedną lub więcej wartości
z klas niepoprawnych. W przypadku kombinacji zawierających wartości jedynie z klas poprawnych
minimalnym wymaganiem jest tzw. proste pokrycie każdej z poprawnych klas równoważności dla każdego
parametru. Minimalna liczba przypadków testowych potrzebnych w tym przypadku jest równa największej
liczbie poprawnych klas równoważności spośród wszystkich rozważanych parametrów, zakładając, że
wartości parametrów są od siebie niezależne. Bardziej dokładne typy pokrycia związane z technikami
kombinatorycznymi obejmują m.in. pokrycie dla testowania sposobem par (zob. punkt 3.2.6. poniżej) lub

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 30 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

pełne pokrycie wszystkich możliwych kombinacji poprawnych klas równoważności. Niepoprawne klasy
równoważności powinny być przetestowane co najmniej indywidualnie, tzn. w kombinacji z wyłącznie
poprawnymi klasami równoważności dla pozostałych parametrów, w celu uniknięcia zjawiska maskowania
defektów. Zatem w przypadku prostego pokrycia, każda niepoprawna klasa równoważności wnosi jeden
dodatkowy przypadek testowy do zbioru testów. W przypadku wysokiego ryzyka do zbioru testów można
dodać inne kombinacje, np. złożone wyłącznie z niepoprawnych klas równoważności lub z par
niepoprawnych klas równoważności.

Typy defektów
Analityk testów używa tej techniki do wykrywania defektów związanych z obsługą różnych wartości danych.

3.2.2. Analiza wartości brzegowych

Technika analizy wartości brzegowych służy do testowania poprawności obsługi wartości znajdujących się
na granicach uporządkowanych klas równoważności. Dwa najpopularniejsze sposoby zastosowania tej
techniki to dwupunktowa i trójpunktowa analiza wartości brzegowych. W przypadku testowania metodą
dwupunktową używa się wartości brzegowej i wartości sąsiedniej, wykraczającej poza daną klasę
(z najmniejszym możliwym przyrostem wynikającym z założonego poziomu wymaganej dokładności).
Na przykład, jeżeli klasa równoważności dla wartości waluty (a więc z dokładnością do dwóch miejsc po
przecinku) zawiera wartości od 1 do 10, to testy dla górnej wartości brzegowej tej klasy w technice
dwupunktowej uwzględniają wartości 10 i 10,01. Z kolei wartości dla dolnej wartości brzegowej tej klasy
testy uwzględniają wartości 1 i 0,99. Wartości brzegowe danej klasy są określone przez maksymalną
i minimalną wartość zdefiniowanej klasy równoważności.

W przypadku testowania metodą trójpunktową używa się wartości tuż poniżej wartości brzegowej, samej
wartości brzegowej i wartości tuż powyżej niej. W poprzednim przykładzie test dla górnej wartości brzegowej
rozważanej klasy uwzględniałby wartości 9,99, 10 i 10,01, a dla dolnej zostałyby przetestowane wartości
1,01, 1 i 0,99. Wybór między testowaniem metodą dwupunktową a trójpunktową powinien być podyktowany
ryzykiem związanym z testowanym elementem, przy czym podejścia trójpunktowego używa się
w przypadku elementów o większym ryzyku.

Obszar zastosowania
Ta technika ma zastosowanie na wszystkich poziomach testów i można jej użyć, gdy istnieją
uporządkowane klasy równoważności. Z tego powodu jest często stosowana wraz z techniką podziału na
klasy równoważności. Klasy równoważności muszą być uporządkowane ze względu na konieczność użycia
elementów zbioru leżących na jego brzegu i tuż poza nim. Na przykład zakres liczb jest klasą
uporządkowaną. Klasa zawierająca pewne ciągi znaków może być uporządkowana np. poprzez
wprowadzenie porządku leksykograficznego, ale jeśli uporządkowanie nie jest istotne z biznesowego lub
technicznego punktu widzenia, stosowanie analizy wartości brzegowych nie wnosi wartości dodanej.
Oprócz zakresów liczb, inne przykłady klas równoważności, do których można zastosować analizę wartości
brzegowych, to:

● atrybuty liczbowe zmiennych innych niż liczbowe (np. długość),
● liczba wykonań iteracji pętli, w tym pętli w diagramach przejść stanów,
● liczba elementów iteracji przechowywanych w strukturach danych takich jak tablice,
● rozmiar obiektów fizycznych (w tym pamięci),
● czas trwania czynności.

Ograniczenia/trudności

Dokładność tej techniki zależy od właściwego zidentyfikowania granic klas równoważności, czyli
wyznaczenia samych klas. Wiąże się to zatem z takimi samymi ograniczeniami i trudnościami, jak
w przypadku podziału na klasy równoważności. Analityk testów powinien również zdawać sobie sprawę ze
ścisłości (dokładności) dla wartości poprawnych i niepoprawnych, aby móc ustalić odpowiednie wartości do
przetestowania. Analizę wartości brzegowych można wykorzystać tylko z klasami uporządkowanymi, ale
nie ogranicza się to wyłącznie do zakresów wartości poprawnych. Na przykład w przypadku testowania

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 31 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

liczby komórek obsługiwanych w arkuszu kalkulacyjnym bierze się pod uwagę klasę zawierającą liczbę
komórek do maksymalnej liczby dozwolonych komórek włącznie (wartość brzegowa) oraz klasę
rozpoczynającą się od liczby komórek o jeden większej od liczby maksymalnej (ponad wartością brzegową).

Pokrycie
Pokrycie ustala się poprzez podzielenie liczby przetestowanych wartości brzegowych przez liczbę
wszystkich zidentyfikowanych wartości brzegowych1 (zarówno dla testowania dwu- jak i trójpunktowego).
Pokrycie jest wyrażane w procentach.
Podobnie jak w przypadku klas równoważności, w przypadku wielu parametrów analityk testów powinien
wybrać prosty lub kombinatoryczny typ pokrycia, w zależności od ryzyka.

Typy defektów
Analiza wartości brzegowych sprawdza się przy wyszukiwaniu błędnie zdefiniowanych lub identyfikowaniu
niezdefiniowanych granic zbiorów, a także umożliwia wykrycie nadmiarowych granic. Za pomocą tej techniki
można wykryć defekty związane z przetwarzaniem wartości brzegowych, zwłaszcza błędy użycia
operatorów „mniejsze niż" i „większe niż” (np. zamiana). Można jej też użyć do wykrywania defektów
niefunkcjonalnych, np. związanych z limitami (system obsługujący 10 000 jednoczesnych użytkowników,
ale nie 10 001).

3.2.3. Testowanie w oparciu o tablicę decyzyjną

Tablica decyzyjna jest tabelaryczną reprezentacją zbioru warunków i związanych z nimi akcji. Zbiór ten
wyraża reguły wskazujące, które akcje powinny wystąpić dla określonego zbioru zachodzących warunków
[OMG-DMN]. Analityk testów może skorzystać z tablic decyzyjnych do analizy reguł opisujących testowane
oprogramowanie i zaprojektować testy pokrywające te reguły.

Warunki i wynikające z nich akcje przedmiotu testów tworzą wiersze tablicy decyzyjnej, przy czym
zazwyczaj warunki znajdują się w górnej, a akcje – w dolnej części tablicy. Pierwsza kolumna tablicy zawiera
odpowiednio opisy warunków i akcji. Kolejne kolumny, zwane regułami, zawierają wartości warunków
i odpowiadające im wartości akcji.

Tablice decyzyjne, w których warunki przyjmują jedynie dwie wartości logiczne „Prawda” i „Fałsz”, są zwane
tablicami decyzyjnymi z ograniczonym zakresem wejść. Przykładem takiego warunku może być warunek
„Dochód klienta < 1 000”. Tablice decyzyjne z rozszerzonym zakresem wejść pozwalają, aby warunki
przyjmowały również inne niż logiczne wartości. Na przykład, warunek „Dochód klienta” może przyjąć jedną
z trzech możliwych wartości: „mniejszy niż 1 000”, „pomiędzy 1 000 a 2 000”, „większy niż 2 000”.

Proste akcje przyjmują wartości logiczne „Prawda” i „Fałsz” (np. akcja „Przyznana zniżka = 20%” przyjmuje
wartość „Prawda” zazwyczaj oznaczaną w tablicy decyzyjnej znakiem „X”, jeśli akcja powinna zajść, albo
wartość „Fałsz” oznaczaną zazwyczaj znakiem „–”, jeśli akcja nie powinna zajść). Tak jak w przypadku
warunków, akcje mogą również przyjmować wartości z innych dziedzin. Na przykład akcja „Przyznana
zniżka” może przyjąć jedną z pięciu możliwych wartości: 0%, 10%, 20%, 35% i 50%.

Testowanie oparte na tablicach decyzyjnych rozpoczyna się od zaprojektowania tablic decyzyjnych na
podstawie specyfikacji. Reguły zawierające nieosiągalne kombinacje warunków są usuwane lub oznaczane
jako „nieosiągalne”. Następnie analityk testów powinien wraz z innymi interesariuszami dokonać przeglądu
zaprojektowanych tablic decyzyjnych. Analityk testów powinien się upewnić, że reguły w tablicy są spójne
(tzn. reguły nie nachodzą na siebie), pełne (tzn. zawierają reguły dla każdej osiągalnej kombinacji wartości
warunków) oraz poprawne (tzn. modelują w sposób właściwy pożądane zachowanie).

1 W przypadku techniki trójpunktowej nie wszystkie wartości muszą być wartościami brzegowymi (np. w omawianym

wcześniej przykładzie dla wartości brzegowej 10 do testów brane są wartości 9.99, 10 i 10.01, gdzie wartość 9.99
nie jest brzegiem żadnej klasy), ale są wliczane do metryki, gdyż stanowią elementy pokrycia. [przyp. tłum.]

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 32 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Podstawowa zasada w testowaniu opartym na tablicach decyzyjnych polega na tym, że reguły odpowiadają
warunkom testowym.
Projektując przypadek testowy dla określonej reguły, analityk testów powinien mieć świadomość, że dane
wejściowe dla przypadku testowego mogą być innymi parametrami niż w warunkach tabeli decyzyjnej. Na
przykład wartość "TRUE" warunku "wiek ≥ 18?" może wymagać od testera obliczenia wieku na podstawie
parametrów wejściowych data urodzenia i bieżąca data. Podobnie oczekiwane wyniki przypadku testowego
mogą być pośrednimi konsekwencjami działań tabeli decyzyjnej.

Gdy tablica decyzyjna jest gotowa, reguły powinny być zaimplementowane w postaci przypadków testowych
poprzez odpowiedni wybór wartości wejściowych i oczekiwanych wyników, które spełnią odpowiednie
warunki i akcje.

Zminimalizowane tablice decyzyjne
Próba przetestowania wszystkich możliwych kombinacji wejść dla odpowiadających im warunków może
prowadzić do powstania ogromnych tablic decyzyjnych. Pełna tablica decyzyjna z ograniczonym zakresem
wejść dla n warunków posiada 2n reguł. Technika polegająca na systematycznym zmniejszaniu liczby
kombinacji nosi nazwę testowania w oparciu o zminimalizowane tablice decyzyjne [Copeland04, Roman18].
Przy użyciu tej techniki grupa reguł z tym samym zestawem akcji może być zredukowana
(zminimalizowana) do jednej reguły jeśli, w ramach tej grupy, niektóre warunki są nieistotne dla akcji,
a wszystkie pozostałe warunki nie zmieniają swoich wartości. W tak powstałej regule wartości warunków
nieistotnych oznaczane są jako „nieistotne”, zazwyczaj poprzez wykorzystanie symbolu myślnika „–”. Dla
warunków nieistotnych analityk testów może zdefiniować dowolne poprawne wartości przy implementacji
testów.

Z innym przypadkiem minimalizowania reguł mamy do czynienia w sytuacji, gdy wartość warunku nie może
współistnieć w kombinacji z jakąś wartością innego warunku lub gdy wartości dwóch bądź więcej warunków
są sprzeczne (taką wartość oznacza się w tablicy jako „nie dotyczy”). Na przykład, w tablicy decyzyjnej dla
płatności kartą, jeśli warunek „karta jest poprawna” jest fałszywy, warunek „kod PIN jest poprawny” nie może
być zastosowany.

Zminimalizowane tablice decyzyjne mogą mieć o wiele mniej reguł niż pełne tablice, co skutkuje mniejszą
liczbą przypadków testowych i mniejszym wysiłkiem testowym. Jeśli reguła posiada wartość „nieistotne”
i regułę tę pokrywa tylko jeden przypadek testowy, tylko jedna z kilku możliwych wartości odpowiedniego
warunku będzie przetestowana dla tej reguły, więc defekt związany z wystąpieniem innej wartości może nie
zostać wykryty. Dlatego w przypadku wysokiego poziomu ryzyka analityk testów w porozumieniu
z kierownikiem testów powinien zdefiniować osobne reguły dla każdej osiągalnej kombinacji pojedynczych
wartości warunków, zamiast minimalizować tablicę.

Obszar zastosowania
Testowanie w oparciu o tablice decyzyjne stosuje się z reguły na poziomach testów integracyjnych,
systemowych i akceptacyjnych. Może ono się sprawdzać również w testowaniu modułowym, jeżeli dany
moduł zawiera logikę decyzyjną. Technika testowania w oparciu o tablice decyzyjne jest szczególnie
przydatna, gdy przedmiot testów jest opisany w postaci diagramów przepływu lub tablic reguł biznesowych.

Tablice decyzyjne są również stosowane jako technika definiowania wymagań i czasami specyfikacji
wymagań, które mogą już być zdefiniowane w takiej postaci. Analityk testów powinien nadal brać udział
w przeglądzie tablic decyzyjnych i analizować je przed rozpoczęciem projektowania testów.

Ograniczenia/trudności
Jeśli rozpatrujemy kombinacje warunków, ustalenie wszystkich warunków wchodzących ze sobą
w interakcje może być trudne, zwłaszcza wtedy, gdy wymagania nie są dobrze zdefiniowane lub nie zostały
w ogóle udokumentowane. Podczas definiowania tablicy decyzyjnej trzeba pamiętać o wyborze

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 33 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

odpowiednich warunków, tak, aby liczba kombinacji była również ograniczona. W najgorszym przypadku
liczba reguł będzie wzrastała wykładniczo.

Pokrycie
Najczęściej stosowany standard pokrycia dla tej techniki wymaga, aby pokryć każdą regułę tablicy
decyzyjnej jednym przypadkiem testowym. Pokrycie jest mierzone jako liczba reguł objętych zestawem
testowym podzielona przez całkowitą liczbę wykonalnych reguł, wyrażone w procentach.

Techniki analizy wartości brzegowych i klas równoważności uzupełniają technikę testowania w oparciu
o tablice decyzyjne, zwłaszcza w przypadku tablic z rozszerzonym zakresem wejść. Jeśli wartości
warunków są uporządkowanymi klasami równoważności, analiza wartości brzegowych może być użyta
w celu zidentyfikowania dodatkowych wartości prowadzących do dodatkowych reguł i przypadków
testowych.

Typy defektów
Typowe defekty to nieprawidłowe przetwarzanie logiki biznesowej przy określonych kombinacjach
warunków, zakończone nieoczekiwanymi rezultatami. Podczas tworzenia tablic decyzyjnych mogą zostać
wykryte defekty w dokumencie specyfikacji. Często okazuje się, że oczekiwany rezultat dla przygotowanego
zestawu warunków nie jest określony (dla co najmniej jednej reguły). Najczęstsze defekty to pominięcia
akcji (tzn. brak informacji, co powinno się zdarzyć w określonej sytuacji) oraz sprzeczności.

3.2.4. Testowanie przejść pomiędzy stanami

Testowanie przejść pomiędzy stanami umożliwia weryfikację zdolności przedmiotu testów do wchodzenia
w zdefiniowane stany i wychodzenia z nich poprzez poprawne przejścia, a także próbę wchodzenia
w niepoprawne stany oraz pokrywania niepoprawnych przejść. W reakcji na zdarzenia przedmiot testów
przechodzi ze stanu w (inny lub ten sam) stan i wykonuje działania. Zdarzenia mogą mieć dodatkowy
kwalifikator warunku (nazywany czasem warunkiem dozoru albo warunkiem sprawdzającym przejścia),
który wpływa na wybór ścieżki przejścia. Na przykład w wyniku zdarzenia logowania przy użyciu poprawnej
kombinacji nazwy użytkownika i hasła zostanie wykonane inne przejście niż w przypadku zdarzenia
logowania z podanym niepoprawnym hasłem. Informacje takie przedstawiane są w postaci diagramu
stanów albo tablicy stanów (która może również zawierać potencjalne niepoprawne przejścia między
stanami [Roman18]).

Obszar zastosowania
Testowanie przejść pomiędzy stanami można zastosować w przypadku każdego oprogramowania
o zdefiniowanych stanach, w którym występują zdarzenia powodujące przejścia pomiędzy tymi stanami
(np. przejścia na inny ekran aplikacji). Testowanie przejść pomiędzy stanami sprawdza się na wszystkich
poziomach testowania. Dobrymi kandydatami do tego rodzaju testów są: oprogramowanie wbudowane,
aplikacje WWW i systemy transakcyjne, a także systemy sterowania, np. sterowniki sygnalizatorów
świetlnych.

Ograniczenia/trudności
Najtrudniejszą częścią definiowania tablicy lub diagramu stanów jest zwykle ustalenie listy stanów.
W przypadku przedmiotu testów z interfejsem użytkownika stany często reprezentują ekrany wyświetlane
przez aplikację. W oprogramowaniu wbudowanym stany mogą zależeć od stanów elementów sprzętowych.

Oprócz stanów podstawową jednostką testowania w tej technice jest pojedyncze przejście. Przy prostym
przetestowaniu wszystkich pojedynczych przejść można wykryć pewne defekty przejść pomiędzy stanami,
ale większe możliwości daje testowanie sekwencji przejść. Pojedyncze przejście nazywane jest
0-przełączeniem. Sekwencję dwóch następujących po sobie przejść określa się jako 1-przełączenie.
Sekwencję trzech kolejnych przejść – jako 2-przełączenie itd. W ogólności, N-przełączenie reprezentuje
sekwencję N+1 kolejnych przejść [Chow1978]. Wraz ze wzrostem N bardzo szybko wzrasta również liczba

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 34 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

N-przełączeń, co utrudnia osiągnięcie pokrycia N-przełączeń za pomocą rozsądnego, małego zbioru
testów.

Pokrycie
Podobnie jak w przypadku innych technik testowania istnieje tu hierarchia poziomów pokrycia. Minimalny,
akceptowalny stopień pokrycia, obejmuje odwiedzenie wszystkich stanów i wykonanie wszystkich przejść
co najmniej jednokrotnie. Stuprocentowe pokrycie przejść (nazywane też 100% pokryciem 0-przełączeń)
gwarantuje, że każdy stan został odwiedzony i każde przejście wykonane, chyba że projekt systemu lub
model przejść pomiędzy stanami (diagram albo tablica) zawierają defekty. W zależności od relacji między
stanami a przejściami może być konieczne wielokrotne wykonanie niektórych przejść, aby wykonać inne
przejścia na zależnych od nich ścieżkach.

Pojęcie „pokrycie N-przełączeń” odnosi się do liczby wykonanych przejść długości N+1 i wyrażane jest jako
wartość procentowa (odsetek wszystkich przejść tej długości). Na przykład w celu osiągnięcia 100%
pokrycia 1-przełączeń należy co najmniej raz przetestować każdą poprawną sekwencję dwóch
następujących po sobie przejść. W tego rodzaju teście można wykryć pewne typy awarii, które nie ujawniają
się przy 100% pokrycia 0-przełączeń.

Pojęcie „pokrycie okrążenia” (ang. round-trip) odnosi się do sytuacji, gdy sekwencje przejść tworzą pętle.
Stuprocentowe pokrycie okrążenia jest osiągane, gdy przetestowano wszystkie pętle z dowolnego stanu
prowadzące do tego samego stanu, dla wszystkich stanów, w których takie pętle zaczynają się i kończą.
Pętle mogą zawierać co najwyżej jedno wystąpienie dowolnego stanu (z wyjątkiem stanów
początkowego/końcowego, które są tożsame) [Offutt16].

Niezależnie od przyjętego podejścia można uzyskać jeszcze wyższą wartość pokrycia poprzez próbę
uwzględnienia przejść niepoprawnych zidentyfikowanych w tablicy przejść pomiędzy stanami. Wymagania
dotyczące pokrycia używane do testowania przejść pomiędzy stanami muszą zawierać informację, czy
uwzględniono w nich przejścia niepoprawne.

Diagram stanów lub tablica stanów dla konkretnego przedmiotu testów ułatwiają projektowanie przypadków
testowych i uzyskanie zakładanego pokrycia. Informacje takie można również przedstawić w postaci tablicy
zawierającej N-przełączenia dla konkretnej wartości N [Roman18], [Black09].

Identyfikację elementów uwzględnianych w pokryciu (np. przejść, stanów lub N-przełączeń) można również
przeprowadzić w ramach procedury manualnej. Sugerowaną metodą działania jest wydrukowanie diagramu
stanów lub tablicy stanów i zaznaczanie uwzględnionych elementów do momentu uzyskania zakładanego
pokrycia [Black09]. Jeśli diagramy stanów lub tablice stanów są bardziej złożone, takie postępowanie może
okazać się zbyt czasochłonne. Dlatego do obsługi testowania przejść pomiędzy stanami należy użyć
odpowiedniego narzędzia.

Typy defektów
Typowe defekty wykrywane w testach tego typu to między innymi (zob. także [Beizer95]):

● niepoprawne typy lub wartości zdarzeń,
● niepoprawne typy lub wartości akcji,
● niepoprawny stan początkowy,
● brak możliwości osiągnięcia pewnych stanów końcowych,
● brak możliwości wejścia do określonych stanów,
● dodatkowe (niepotrzebne, nadmiarowe) stany,
● brak możliwości wykonania pewnych poprawnych przejść,
● możliwość wykonania niepoprawnych przejść,
● niepoprawne warunki dozoru.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 35 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Podczas tworzenia modelu przejść pomiędzy stanami w specyfikacji wymagań mogą zostać wykryte
defekty. Najczęstsze defekty to pominięcia (tzn. brak informacji, co powinno się zdarzyć w określonej
sytuacji) oraz sprzeczności.

3.2.5. Technika drzewa klasyfikacji

Drzewa klasyfikacji są wykorzystywane w niektórych czarnoskrzynkowych technikach testowania. Stanowią
graficzną reprezentację tworzonej przestrzeni danych związanej z przedmiotem testów.

Dane są zorganizowane w ramach klasyfikacji i klas w następujący sposób:

● Klasyfikacje: reprezentują parametry w przestrzeni danych przedmiotu testów, takie jak parametry
wejściowe (zawierające stany środowiska i warunki wstępne) czy parametry wyjściowe. Na przykład
jeśli aplikacja może być skonfigurowana na wiele sposobów, klasyfikacje mogą uwzględniać klienta,
przeglądarkę, język i system operacyjny.

● Klasy: każda klasyfikacja może mieć dowolną liczbę klas i podklas opisujących wystąpienia
parametru. Każda klasa (lub klasa równoważności) opisuje pewną wartość w ramach klasyfikacji.
W powyższym przykładzie klasyfikacja języka może zawierać klasy równoważności odpowiadające
językowi angielskiemu, francuskiemu i hiszpańskiemu.

Drzewa klasyfikacji pozwalają analitykom testów wprowadzać potrzebne kombinacje. Obejmuje to na
przykład kombinacje par (patrz punkt 3.2.6.), kombinacje trójek wartości i pojedyncze wartości.

Dodatkowe informacje na temat sposobów korzystania z techniki drzewa klasyfikacji można znaleźć
w publikacjach [Bath14], [Black09] i [Roman18].

Obszar zastosowania
Dzięki utworzeniu drzewa klasyfikacji analityk testów może zidentyfikować parametry (klasyfikacje) i ich
klasy równoważności (klasy), które warto uwzględnić w testowaniu.

Dalsza analiza diagramu drzewa klasyfikacji umożliwia określenie potencjalnych wartości brzegowych
i pewnych kombinacji danych wejściowych, które są szczególnie interesujące albo które należy pominąć
(np. z powodu ich niezgodności). Wyjściowe drzewo klasyfikacji może zostać następnie wykorzystane
w dzieleniu na klasy równoważności, analizie wartości brzegowych lub w testowaniu sposobem par (patrz
punkt 3.2.6.).

Ograniczenia/trudności
Gdy liczba klasyfikacji i/lub klas rośnie, diagram staje się bardziej rozbudowany i trudniej się nim posługiwać.
Ponadto, technika drzewa klasyfikacji nie tworzy kompletnych przypadków testowych, a jedynie kombinacje
danych testowych. Do obowiązków analityków testów należy tworzenie pełnych przypadków testowych na
podstawie wyników tych kombinacji.

Pokrycie
Przypadki testowe można na przykład projektować z myślą o minimalnym pokryciu klas (tj. co najmniej
jednokrotnym przetestowaniu wszystkich wartości w ramach klasyfikacji). Analityk testów może także
podjąć decyzję o pokryciu kombinacji par lub użyć innego podejścia kombinatorycznego, np. pokrycia
kombinacji trójek wartości.

Typy defektów
Typy wykrywanych defektów zależą od techniki, którą wspierają drzewa klasyfikacji (podział na klasy
równoważności, analiza wartości brzegowych lub testowanie sposobem par).

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 36 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

3.2.6. Testowanie sposobem par

Testowanie sposobem par stosuje się w przypadku oprogramowania, dla którego należy sprawdzić
kombinacje wielu parametrów wejściowych, z których każdy przyjmuje wiele różnych wartości. Liczba
wszystkich kombinacji jest wtedy zbyt duża, aby było możliwe ich przetestowanie w przewidzianym czasie.
Parametry wejściowe mogą być niezależne, tj. każda opcja każdego czynnika (dowolnie wybrana wartość
dowolnego parametru wejściowego) może utworzyć kombinację z każdą opcją dowolnego innego czynnika,
choć nie zawsze tak być musi (zob. poniżej uwagę o modelach cech). Kombinacja konkretnego parametru
(zmiennej lub czynnika) i konkretnej wartości tego parametru nosi nazwę pary parametr-wartość.
Na przykład jeśli istnieje parametr „kolor”, który może przybierać jedną z siedmiu dozwolonych wartości,
w tym kolor czerwony, to parą parametr-wartość mogłaby być para „kolor = czerwony”.

W testowaniu sposobem par wykorzystywane są techniki kombinatoryczne, aby zapewnić co najmniej
jednokrotne przetestowanie każdej pary parametr-wartość danego parametru w połączeniu z każdą parą
parametr-wartość każdego innego parametru (innymi słowy, żeby zostały przetestowane wszystkie pary par
parametr-wartość dla każdych dwóch różnych parametrów), a jednocześnie aby uniknąć testowania
wszystkich kombinacji par parametr-wartość. Jeśli analityk testów stosuje podejście manualne, tworzy
tablicę, której wiersze reprezentują przypadki testowe, a każda kolumna odpowiada jednemu parametrowi.
Następnie analityk testów wypełnia ją wartościami w taki sposób, aby znalazły się w niej wszystkie możliwe
pary wartości (patrz [Roman18]). Wszystkie puste wpisy w tablicy analityk testów może wypełnić
wartościami zgodnie z wiedzą na temat danej dziedziny.

Istnieje wiele narzędzi wspomagających analityka testów w tym zadaniu (przykłady są dostępne pod
adresem www.pairwise.org). W takich narzędziach należy wprowadzić listę parametrów i ich wartości, aby
wygenerować odpowiedni zbiór kombinacji wartości parametrów pokrywających wszystkie pary par
parametr-wartość. Dane wyjściowe z narzędzia można wykorzystać jako dane wejściowe dla przypadków
testowych. Należy pamiętać, że analityk testów powinien określić oczekiwane rezultaty dla każdej
kombinacji utworzonej w narzędziach.

Drzewa klasyfikacji (patrz punkt 3.2.5.) są często stosowane w połączeniu z testowaniem sposobem par
[Bath14]. Istnieją narzędzia wspomagające projektowanie drzewa klasyfikacji i umożliwiające wizualizację
kombinacji parametrów i ich wartości (w niektórych narzędziach dostępne są opcje definiowania par). Dzięki
temu można określić następujące informacje:

● Wartości wejściowe używane w technice testowania sposobem par.
● Konkretne interesujące kombinacje (np. często używane wartości lub częste źródła defektów).
● Konkretne kombinacje niezgodne. Nie oznacza to, że czynniki połączone w kombinacji nie będą na

siebie wzajemnie wpływać; może się tak zdarzyć, ale ten wpływ powinien mieć akceptowalny
zakres.

● Powiązania logiczne między zmiennymi. Przykład: „jeśli zmienna1 = x, to zmienna2 nie może
przyjmować wartości y”. Drzewa klasyfikacji, w których zapisano takie informacje o powiązaniach,
są nazywane modelami cech (ang. feature models).

Obszar zastosowania

Problem zbyt wielu kombinacji wartości parametrów przejawia się w co najmniej dwóch sytuacjach
związanych z testowaniem. W niektórych elementach testowych występuje kilka parametrów, każdy
z kilkoma możliwymi wartościami — na przykład ekran z kilkoma polami do wprowadzania danych.
Kombinacje wartości parametrów stanowią dane wejściowe dla takich przypadków testowych. Ponadto
niektóre systemy można konfigurować w kilku różnych wymiarach, co skutkuje potencjalnie dużą
przestrzenią możliwych konfiguracji. W obu tych sytuacjach można posłużyć się techniką testowania
sposobem par, aby wybrać odpowiedni i osiągalny podzbiór kombinacji, który jest zarządzalny i możliwy do
wykonania.

W przypadku parametrów o dużej liczbie wartości można najpierw zastosować technikę podziału na klasy
równoważności lub inny mechanizm wyboru, aby zmniejszyć liczbę wartości danego parametru, a następnie

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 37 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

wykonać testowanie sposobem par, aby zmniejszyć zbiór kombinacji wynikowych. Zapisanie parametrów
i ich wartości w drzewie klasyfikacji ułatwia realizację tego zadania.

Opisane techniki stosuje się zwykle na poziomach testów integracji modułów, testów systemowych i testów
integracji systemów.

Ograniczenia/trudności
Głównym ograniczeniem opisywanych technik jest założenie, że rezultaty kilku testów są reprezentatywne
dla wszystkich testów, a testy te reprezentują oczekiwane sposoby użycia systemu. Jeżeli dana kombinacja
nie zostanie wybrana do przetestowania, nieoczekiwane interakcje między pewnymi zmiennymi mogą
pozostać ukryte. Ponadto te techniki trudno wyjaśnić odbiorcom bez przygotowania technicznego, ponieważ
mogą oni mieć trudności ze zrozumieniem logiki redukcji liczby testów. Warto przy okazji poinformować
zainteresowanych o wynikach badań empirycznych [Kuhn16]. W objętych nimi urządzeniach medycznych
66% awarii było związane z jedną zmienną, natomiast zsumowany wskaźnik awarii wywołanych przez jedną
zmienną lub interakcję dwóch zmiennych wyniósł 97%. Istnieje rezydualne ryzyko związane z możliwością
braku wykrycia w testach sposobem par awarii systemu wynikających z interakcji co najmniej trzech
zmiennych.

Czasem trudności sprawia identyfikacja parametrów i ich odpowiednich wartości. Dlatego zadanie to
powinno być realizowane z wykorzystaniem drzew klasyfikacji, jeśli jest to możliwe (patrz sekcja 3.2.5.).
Trudno ręcznie znaleźć minimalny zestaw kombinacji, który zapewni określony poziom pokrycia, dlatego do
znalezienia możliwie małego zbioru kombinacji z reguły używa się specjalnych narzędzi. Niektóre narzędzia
potrafią wymusić uwzględnienie lub wykluczenie pewnych kombinacji w ostatecznym zbiorze. Analityk
testów może posłużyć się tą funkcją, aby położyć większy lub mniejszy nacisk na pewne czynniki, zgodnie
ze swoją wiedzą z danej dziedziny lub informacjami o sposobach użytkowania produktu.

Pokrycie
W stuprocentowym pokryciu sposobem par każda para wartości dowolnej pary różnych parametrów musi
być uwzględniona w co najmniej jednej kombinacji.

Typy defektów
Defekty wykrywane najczęściej przy użyciu tej techniki testowania wiążą się z kombinacjami warunków
dwóch parametrów.

3.2.7. Testowanie oparte na przypadkach użycia

Testowanie oparte na przypadkach użycia umożliwia przeprowadzenie transakcyjnych testów opartych na
doświadczeniu, które powinny naśladować użytkowanie modułu lub systemu opisane w przypadkach
użycia. Przypadki użycia definiują interakcje aktorów z modułem lub systemem służące osiągnięciu jakiegoś
celu. Aktorami mogą być użytkownicy (ludzie), zewnętrzny sprzęt oraz inne moduły lub systemy.

Powszechnie przyjęty standard dla przypadków użycia jest opisany w [OMG-UML].

Obszar zastosowania
Testowanie oparte na przypadkach użycia wykonuje się zwykle na poziomie testów systemowych
i akceptacyjnych. Jeśli zachowanie modułów lub systemów zostało opisane w formie przypadków użycia,
ten rodzaj testowania można też zastosować w testach integracyjnych. Przypadki użycia często stanowią
również podstawę testów wydajnościowych, ponieważ odzwierciedlają realistyczne użytkowanie systemu.
Zachowania opisane w przypadkach użycia można przypisać do użytkowników wirtualnych w celu
zbudowania realistycznego obciążenia systemu (o ile w samych scenariuszach albo dla tych scenariuszy
określono wymagania dotyczące obciążenia i wydajności).

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 38 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Ograniczenia/trudności
Aby przypadki użycia były poprawne, muszą opisywać realistyczne działania użytkownika. Specyfikacje
przypadków użycia są formą projektu systemu. Wymagania opisujące cele, które mają zrealizować
użytkownicy, powinny pochodzić od samych użytkowników lub ich przedstawicieli. Przed zaprojektowaniem
odpowiednich przypadków użycia należy zweryfikować takie wymagania, porównując je z wymaganiami
organizacyjnymi. Wartość przypadku użycia jest ograniczona, gdy nie odzwierciedla on rzeczywistych
wymagań użytkowników i wymagań organizacyjnych. Taki przypadek nie ułatwia realizacji zadań
użytkowników, a raczej ją utrudnia.

Aby pokrycie było dokładne, należy poprawnie zdefiniować wyjątki, ścieżki alternatywne i obsługę błędów.
Przypadki użycia powinny służyć jako wskazówki, ale nie jako kompletna definicja elementów do
przetestowania, ponieważ mogą nie zawierać jasnej definicji całego zestawu wymagań. Warto utworzyć na
podstawie opisu słownego przypadku użycia również inne modele, na przykład diagramy przepływu
sterowania (ang. flowcharts) i/lub tablice decyzyjne, aby zwiększyć dokładność testowania i zweryfikować
sam przypadek użycia. Podobnie jak w wypadku innych rodzajów specyfikacji, taki proces ułatwia wykrycie
ewentualnych anomalii logicznych w opisie przypadków użycia, o ile one istnieją.

Pokrycie
Minimalny dopuszczalny poziom pokrycia przypadku użycia to jeden przypadek testowy do obsługi
podstawowego zachowania i wystarczająca liczba dodatkowych przypadków testowych odpowiadających
wszystkim ścieżkom alternatywnym i obsłudze błędów. Jeśli wymagany jest minimalny zestaw testowy, to
wiele różnych alternatywnych zachowań można uwzględnić w ramach jednego przypadku testowego, o ile
są one ze sobą zgodne. Jeśli wymagane są bardziej rozbudowane opcje diagnostyczne (np. pomoc
w lokalizowaniu defektów), można zaprojektować po jednym dodatkowym przypadku testowym na każdą
ścieżkę alternatywną, chociaż może się zdarzyć, że część zagnieżdżonych ścieżek alternatywnych będzie
musiała trafić do tych samych przypadków testowych (np. zakończenie lub brak zakończenia działania
w ramach obsługi wyjątku „ponów próbę”).

Typy defektów
Wykrywane defekty to: nieprawidłowa obsługa zdefiniowanych zachowań, brak obsługi ścieżek
alternatywnych, nieprawidłowe przetwarzanie podanych warunków oraz niepoprawnie zaimplementowane
lub nieprawidłowe komunikaty o awariach.

3.2.8. Łączenie technik

Czasem w celu utworzenia przypadków testowych łączy się ze sobą kilka technik. Na przykład warunki
zidentyfikowane za pomocą tablicy decyzyjnej można podzielić na klasy równoważności, aby odkryć różne
sposoby spełnienia danego warunku. Przypadki testowe pokrywają wówczas nie tylko wszystkie
kombinacje warunków, ale również, dla warunków podzielonych na klasy, powinny być zaprojektowane
dodatkowe przypadki testowe, aby pokryć dodatkowo poszczególne klasy równoważności. Podejmując
decyzję o zastosowaniu danej techniki, analityk testów powinien wziąć pod uwagę jej obszar zastosowania,
ograniczenia i trudności z nią związane oraz cele testowania (pokrycie i rodzaj poszukiwanych defektów).
Aspekty te zostały przedstawione w opisach poszczególnych technik w niniejszym rozdziale. Może być tak,
że w danej sytuacji nie da się wybrać „najlepszej” techniki. Łączenie odpowiednich technik będzie często
najskuteczniejszym sposobem osiągnięcia wyznaczonych celów testowych, o ile istnieje wystarczająca
ilość czasu i umiejętności, aby prawidłowo zastosować techniki.

3.3. Techniki testowania oparte na doświadczeniu

Testowanie oparte na doświadczeniu wykorzystuje umiejętności i intuicję testerów oraz ich doświadczenia
w pracy z aplikacjami i technologiami podobnymi do testowanych. Celem jest takie ukierunkowanie testów,
aby zwiększyć skuteczność wykrywania defektów. Techniki testowania tego typu obejmują działania od
„szybkich testów”, w których nie przewiduje się formalnie określonych działań do wykonania przez testera,

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 39 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

poprzez wstępnie zaplanowane sesje testowe, aż po udokumentowane sesje testowe wykorzystujące karty
opisu testów. Takie metody testowania niemal zawsze okazują się przydatne, jednak szczególnej wartości
nabierają w pewnych sytuacjach w projekcie.

Zalety testowania opartego na doświadczeniu:

● Może skutecznie zastąpić bardziej strukturalne podejścia w przypadku, gdy brak dokumentacji
systemu.

● Można zastosować takie techniki, gdy na testowanie przeznaczono bardzo niewiele czasu.
● W trakcie testowania można skorzystać z wiedzy specjalistycznej związanej z daną dziedziną

i technologią. Mogą jej dostarczyć osoby nie biorące udziału w testowaniu, np. analitycy biznesowi
i klienci.

● Programiści mogą na wczesnych etapach pracy uzyskać informacje zwrotne.
● Zespół ma okazję poznać oprogramowanie w trakcie jego wytwarzania.
● Jest skuteczne, gdy awarie są analizowane w trakcie wykonania programu.
● Możliwe jest zastosowanie różnorodnych technik testowania.

Wady testowania opartego na doświadczeniu:

● Testowanie tego typu może być niewłaściwe, jeśli wymagana jest szczegółowa dokumentacja
testowa.

● Trudno uzyskać wysoki poziom powtarzalności testów.
● Możliwości precyzyjnej oceny pokrycia są ograniczone.
● Testy tego typu trudniej poddają się późniejszej automatyzacji.

W podejściach reaktywnych i heurystycznych testerzy wykonują zwykle testy oparte na doświadczeniu,
a testowanie można bardziej elastycznie dopasować do zachodzących zdarzeń niż w przypadku podejść
ze ścisłym planowaniem testów. Ponadto wykonanie testów i ocena ich rezultatów odbywają się
równocześnie. Niektóre bardziej systematyczne podejścia do testowania opartego na doświadczeniu nie są
w pełni dynamiczne, tj. testy nie są tworzone na bieżąco podczas ich wykonywania przez testera. Może tak
być np. w sytuacji, gdy przed wykonaniem testów do analizy pewnych aspektów przedmiotu testów stosuje
się technikę zgadywania błędów.

Należy zauważyć, że co prawda istnieją pewne wskazówki co do szacowania pokrycia produktu testami,
które przedstawiono poniżej, jednak w technikach opartych na doświadczeniu nie istnieją formalne kryteria
pokrycia.

3.3.1 Zgadywanie błędów

W technice zgadywania błędów analityk testów korzysta ze swojego doświadczenia, zgadując, jakie
potencjalne błędy mogły zostać popełnione podczas projektowania i tworzenia kodu. Po zidentyfikowaniu
oczekiwanych błędów analityk testów określa najlepsze metody wykrywania wynikających z nich defektów.
Na przykład jeżeli analityk testów spodziewa się, że w oprogramowaniu będą występować awarie
w przypadku wprowadzenia niepoprawnego hasła, to przeprowadzi testy polegające na wprowadzaniu
różnego rodzaju wartości w polu hasła w celu sprawdzenia, czy rzeczywiście popełniono taki błąd i czy
skutkuje on defektem powodującym awarię po uruchomieniu testów.

Zgadywanie błędów jest nie tylko techniką testowania, ale może również być przydatne podczas analizy
ryzyka w celu zidentyfikowania potencjalnych trybów awarii [Myers11].

Obszar zastosowania
Technikę zgadywania błędów stosuje się przede wszystkim podczas testów integracyjnych
i systemowych, można to jednak robić na dowolnym poziomie testów. Ta technika często jest stosowana
razem z innymi technikami i ułatwia poszerzenie zakresu istniejących przypadków testowych. Zgadywanie
błędów może się także okazać efektywne podczas testowania nowej wersji oprogramowania pod kątem

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 40 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

często występujących defektów jeszcze przed rozpoczęciem bardziej rygorystycznego testowania
skryptowego (ang. scripted testing).

Ograniczenia/trudności
Ze zgadywaniem błędów wiążą się pewne ograniczenia i trudności:

● Pokrycie jest trudne do oszacowania i w dużej mierze zależy od umiejętności i doświadczenia
analityka testów.

● Tę technikę powinni stosować przede wszystkim doświadczeni testerzy, zaznajomieni z typami
defektów często spotykanymi w kodzie takiego samego rodzaju, jak ten testowany.

● Zgadywanie błędów jest szeroko stosowane, ale często nie podlega dokumentowaniu, może więc
być mniej powtarzalne niż inne formy testowania.

● Zdarza się, że przypadki testowe są dokumentowane w sposób zrozumiały wyłącznie dla autora
testów, który jako jedyny potrafi je wykonać ponownie.

Pokrycie

W przypadku wykorzystania taksonomii defektów pokrycie ustala się jako wskaźnik procentowy
odpowiadający stosunkowi liczby przetestowanych elementów taksonomii do łącznej liczby elementów
taksonomii. Jeżeli nie zastosowano żadnej taksonomii defektów, pokrycie jest ograniczone doświadczeniem
i wiedzą testera oraz ilością dostępnego czasu. Liczba znalezionych za pomocą tej techniki defektów bywa
różna w zależności od umiejętności testera wynajdowania problematycznych obszarów.

Typy defektów
Zazwyczaj wykrywane są defekty zdefiniowane w wybranej taksonomii defektów lub „odgadnięte” przez
analityka testów, które mogą pozostać niewykryte przez testy czarnoskrzynkowe.

3.3.2. Testowanie w oparciu o listę kontrolną

W technice testowania w oparciu o listę kontrolną doświadczony analityk testów korzysta
z wysokopoziomowej, ogólnej listy elementów, na które należy zwrócić uwagę, które należy sprawdzić lub
o których należy pamiętać, albo z zestawu reguł czy kryteriów, pod kątem których trzeba sprawdzić
przedmiot testów. Listy kontrolne są tworzone w oparciu o standardy, doświadczenie i inne źródła. Na
przykład, lista kontrolna standardu interfejsu użytkownika może być wykorzystana jako podstawa do
testowania aplikacji. W projektach zwinnych listy kontrolne można budować na podstawie kryteriów
akceptacji historyjki użytkownika.

Obszar zastosowania
Testowanie w oparciu o listę kontrolną najlepiej sprawdza się w projektach z doświadczonym zespołem
testowym, zaznajomionym z testowanym oprogramowaniem lub obszarem, którego dotyczy lista kontrolna
(np. aby skutecznie posłużyć się listą kontrolną dla interfejsu użytkownika, analityk testów nie musi znać
konkretnego, testowanego systemu, wystarczy znajomość problematyki testowania interfejsów
użytkownika). Listy kontrolne mają postać wysokopoziomową i nie uwzględniają szczegółowych kroków
charakterystycznych dla przypadków testowych i procedur testowych, luki są więc uzupełniane przez testera
na podstawie własnej wiedzy. Dzięki pominięciu szczegółowych instrukcji listy kontrolne nie wymagają
dużych nakładów pielęgnacji i można je stosować w wielu podobnych wydaniach oprogramowania.

Listy kontrolne sprawdzają się w sytuacji, gdy wersje oprogramowania pojawiają się często, a modyfikacje
są szybko wprowadzane. Pozwala to skrócić czas poświęcany na przygotowania i utrzymanie dokumentacji
testowej. Listy kontrolne można wykorzystywać na wszystkich poziomach testowania, a także w testach
regresji i testach dymnych.

Ograniczenia/trudności
Wysokopoziomowy charakter list kontrolnych może wpływać na powtarzalność rezultatów testów. Różni
testerzy mogą różnie interpretować listę kontrolną i weryfikować poszczególne elementy różnymi metodami.
Mogą w ten sposób uzyskać różne rezultaty testów mimo wykorzystania tej samej listy kontrolnej. Zwiększa

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 41 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

to potencjalnie pokrycie, ale czasem cierpi na tym powtarzalność. Listy kontrolne mogą również
w nieuzasadniony sposób zwiększać zaufanie względem rzeczywistego poziomu pokrycia, ponieważ
przebieg testów zależy od oceny danego testera. Listy kontrolne można budować na podstawie bardziej
szczegółowych przypadków testowych lub innych list. Zwykle w miarę upływu czasu zwiększa się ich
długość. Wymagana jest pielęgnacja list, tak, aby ich zawartość pokrywała istotne aspekty testowanego
oprogramowania.

Pokrycie
Pokrycie ustala się jako wskaźnik procentowy odpowiadający stosunkowi liczby przetestowanych
elementów listy kontrolnej do łącznej liczby elementów tej listy. Pokrycie jest tak dobre, jak dobra jest lista
kontrolna, ale ze względu na jej wysokopoziomowy charakter rzeczywisty wynik zależy od analityka testów,
który wykonuje test.

Typy defektów
Najczęściej wykrywane za pomocą tej techniki defekty powodują awarie wynikające z wprowadzania
różnych danych, wykonywania kroków w różnej kolejności lub indywidualnego modyfikowania przebiegu
pracy podczas testowania.

3.3.3. Testowanie eksploracyjne

Podczas testowania eksploracyjnego tester jednocześnie poznaje przedmiot testów i jego defekty, planuje
działania testowe do wykonania, projektuje i wykonuje testy oraz raportuje ich rezultaty. Tester dynamicznie
dopasowuje cele testowania podczas jego wykonywania i opracowuje tylko minimum dokumentacji
[Whittaker09].

Obszar zastosowania
Dobrze przeprowadzone testowanie eksploracyjne jest zaplanowane, wykonywane interaktywnie i twórczo.
Technika ta nie wymaga obszernej dokumentacji testowanego systemu, dlatego często się z niej korzysta
w sytuacjach, gdy taka dokumentacja nie jest dostępna lub nie nadaje się do wykorzystania z innymi
technikami testowania. Testowanie eksploracyjne jest często stosowane jako uzupełnienie innych rodzajów
testów i jako podstawa do opracowywania dodatkowych przypadków testowych. Testowanie eksploracyjne
jest często stosowane w zwinnym wytwarzaniu oprogramowania w celu szybkiego, adaptacyjnego
przetestowania historyjek użytkownika przy minimalnych wymaganiach dotyczących dokumentacji.
Technikę tę można jednak również zastosować w projektach opartych na sekwencyjnych modelach
wytwarzania.

Ograniczenia/trudności
Testy eksploracyjne nie zapewniają żadnej miary pokrycia. Ponadto odtworzenie przeprowadzonych testów
może być trudne. Do technik zarządzania testami eksploracyjnymi należą karty opisu testów, jakie mają być
zrealizowane w danej sesji testowej, oraz ramy czasowe (ang. time-boxing) w celu określenia czasu
przeznaczonego na takie testy. Na zakończenie sesji lub zestawu sesji testowania, kierownik testów może
zorganizować spotkanie podsumowujące (ang. debriefing session) w celu zebrania rezultatów testów i
ustalenia, jakie karty opisu testów będą potrzebne w następnych sesjach testowych.

Innym problemem związanym z sesjami eksploracyjnymi jest ich dokładne śledzenie przy użyciu systemu
do zarządzania testami. Czasem tworzy się w tym celu przypadki testowe, które są w istocie sesjami
testowania eksploracyjnego. Umożliwia to śledzenie czasu przydzielonego na testy eksploracyjne
i zaplanowanego pokrycia wraz z tymi metrykami dla innych rodzajów testowania.

Powtarzalność testów eksploracyjnych może być dość ograniczona, co również może powodować
problemy, gdy zajdzie potrzeba odtworzenia kroków, które doprowadziły do awarii. W niektórych
organizacjach do rejestracji kroków wykonanych przez testera eksploracyjnego stosuje się funkcję
rejestrowania i odtwarzania narzędzia do testów automatycznych. W ten sposób można uzyskać pełny zapis
wszystkich czynności wykonanych podczas sesji testowania eksploracyjnego (lub innej sesji testowania

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 42 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

opartego na doświadczeniu). Analiza tego zapisu pod kątem rzeczywistego powodu awarii może być
uciążliwa, ale stanowi on przynajmniej pewną formę utrwalenia wykonanych kroków.

Do zarejestrowania sesji testowania eksploracyjnego można także użyć innych narzędzi, ale nie rejestrują
one oczekiwanych wyników, ponieważ nie zapisują interakcji z graficznym interfejsem użytkownika. W tym
wypadku należy zanotować oczekiwane wyniki, tak, aby w razie potrzeby przeprowadzić właściwą analizę
defektów. Ogólnie rzecz biorąc, tworzenie notatek w trakcie wykonywania testowania eksploracyjnego jest
zalecane, jeśli powtarzalność testów ma znaczenie w projekcie.

Pokrycie
W celu określenia zadań, celów i oczekiwanych produktów prac można zastosować karty opisu testu.
Następnie planuje się sesje testowania eksploracyjnego w taki sposób, aby osiągnąć zapisane kryteria.
Karta opisu testu może również wskazywać obszary, w których należy skoncentrować testy, elementy
należące do zakresu sesji testowania i pozostające poza tym zakresem oraz zasoby potrzebne do
wykonania zaplanowanych testów. W ramach sesji testowania można skoncentrować poszukiwania na
określonych typach defektów lub innych potencjalnie problematycznych obszarach, które nie wymagają
sformalizowania procesu testowania skryptowego.

Typy defektów
Defekty najczęściej wykrywane za pomocą testów eksploracyjnych to problemy scenariuszowe, które nie
zostały wychwycone podczas testów funkcjonalności opartych na dokumentacji, problemy, które nie dają
się sklasyfikować jako przynależne do konkretnej funkcjonalności oraz problemy związane z przepływem
pracy. Podczas testowania eksploracyjnego można również czasem wykryć problemy z wydajnością lub
zabezpieczeniami.

3.3.4. Techniki testowania oparte na defektach

W technikach testowania opartych na defektach punktem wyjścia dla projektu testu jest typ poszukiwanych
defektów; testy systematycznie wyprowadza się z wiedzy na temat danego typu defektów. W odróżnieniu
od testowania czarnoskrzynkowego, w którym testy wyprowadzane są z podstawy testów, w technikach
opartych na defektach testy tworzy się na podstawie list związanych z defektami. Listy tego typu mogą być
uporządkowane według typów defektów, ich podstawowych przyczyn, objawów awarii i innych danych
związanych z defektami. Listy standardowe mają zastosowanie do różnych rodzajów oprogramowania i nie
wiążą się z konkretnymi produktami. Pozwala to wykorzystać standardową wiedzę branżową do utworzenia
konkretnych testów. Dzięki zgodności z listami branżowymi, metryki występowania defektów można śledzić
na poziomie wielu projektów, a nawet organizacji. Najczęściej jednak stosuje się listy defektów specyficzne
dla danej organizacji lub projektu, związane z konkretnymi doświadczeniami i wiedzą specjalistyczną.

W testowaniu opartym na defektach można również używać list zidentyfikowanych czynników ryzyka oraz
scenariuszy ryzyka. Ta technika testowania umożliwia analitykowi testów ukierunkowanie działań na
określony typ defektów lub przejście krok po kroku przez listę opisującą znane i częste defekty danego typu.
Na podstawie tych informacji analityk testów tworzy warunki testowe i przypadki testowe, które powodują
ujawnienie tych defektów (jeżeli są one obecne w produkcie).

Obszar zastosowania
Testowanie oparte na defektach sprawdza się na każdym poziomie testów, ale z reguły jest stosowane
w testach systemowych.

Ograniczenia/trudności
Istnieje wiele taksonomii defektów i niektóre z nich są zorientowane na konkretne typy testów, takie jak
testowanie użyteczności. Ważny jest dobór odpowiedniej taksonomii do testowanego oprogramowania
(o ile takie taksonomie istnieją). Dla innowacyjnego oprogramowania takie taksonomie mogą nie być
dostępne. Niektóre organizacje opracowały własne taksonomie prawdopodobnych lub często spotykanych

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 43 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

defektów. Niezależnie od stosowanej taksonomii defektów ważne jest zdefiniowanie oczekiwanego pokrycia
przed rozpoczęciem testowania.

Pokrycie
Ta technika udostępnia kryteria pokrycia, na podstawie których można ustalić, czy zidentyfikowano
wszystkie przydatne przypadki testowe. W zależności od listy defektów pokrycie może uwzględniać
elementy strukturalne, elementy specyfikacji lub scenariusze użytkowe, a także kombinacje tych
elementów. W praktyce kryteria pokrycia w technikach opartych na defektach są słabiej usystematyzowane
niż w technikach czarnoskrzynkowych — dane są tylko ogólne reguły pokrycia, a decyzje o granicach
użytecznego pokrycia są podejmowane na poziomie konkretnych projektów. Podobnie jak w przypadku
innych technik, spełnienie kryteriów pokrycia nie oznacza, że zbudowano pełny zestaw testowy, ale że na
podstawie rozważanych defektów nie można już opracować w tej technice większej liczby przydatnych
testów.

Typy defektów
Typy wykrywanych defektów zależą zwykle od używanej taksonomii defektów. Na przykład jeżeli użyto listy
defektów interfejsu użytkownika, większość wykrytych defektów będzie prawdopodobnie związana
z interfejsem użytkownika, ale przy okazji tych testów mogą zostać wykryte również inne defekty.

3.4. Zastosowanie najbardziej odpowiedniej techniki

Techniki czarnoskrzynkowe i oparte na doświadczeniu są najbardziej skuteczne, jeśli zostaną zastosowane
wspólnie. Techniki testowania oparte na doświadczeniu wypełniają luki w osiągnięciu celów testów
wynikające z możliwych systemowych słabości czarnoskrzynkowych technik testowania.

Nie istnieje technika idealna, sprawdzająca się w każdej sytuacji. Analityk testów powinien rozumieć zalety
i wady poszczególnych technik i umieć dobrać najbardziej odpowiednią technikę lub zestaw technik do
danej sytuacji: typu projektu, harmonogramu, dostępności informacji, umiejętności testera i innych
czynników, które mogą mieć wpływ na ten dobór.

Informacje podane w opisie poszczególnych technik czarnoskrzynkowych i technik opartych na
doświadczeniu (odpowiednio w podrozdziałach 3.2. i 3.3.), w sekcjach „Obszar zastosowania”,
„Ograniczenia/trudności” i „Pokrycie”, stanowią wskazówki dla analityka testów dokonującego wyboru
technik najbardziej odpowiednich do zastosowania w danej sytuacji.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 44 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

4. Testowanie charakterystyk jakościowych
oprogramowania — 180 minut

Słowa kluczowe

adekwatność funkcjonalna, dostępność, doświadczenie użytkownika, estetyka interfejsu użytkownika,
funkcjonalność, inwentarz pomiarów użyteczności oprogramowania (SUMI), inwentarz analizy i pomiaru
stron internetowych (WAMMI), kompletność funkcjonalna, łatwość nauki, łatwość obsługi, ochrona przed
błędami użytkownika, poprawność funkcjonalna, użyteczność, współdziałanie, kompatybilność

Cele nauczania dotyczące testowania charakterystyk jakościowych
oprogramowania

4.1. Wprowadzenie
Nie określono celów nauczania.

4.2 Charakterystyki jakościowe w testowaniu w dziedzinie biznesowej

TA-4.2.1. (K2) Kandydat potrafi wskazać techniki testowania, które są właściwe do testowania

kompletności funkcjonalnej, poprawności funkcjonalnej i adekwatności funkcjonalnej.
TA-4.2.2. (K2) Kandydat potrafi wymienić typowe defekty, jakie powinny zostać wykryte podczas

testowania kompletności funkcjonalnej, poprawności funkcjonalnej i adekwatności
funkcjonalnej.

TA-4.2.3. (K2) Kandydat potrafi określić, w którym momencie w cyklu wytwarzania oprogramowania
należy testować kompletność funkcjonalną, poprawność funkcjonalną i adekwatność
funkcjonalną.

TA-4.2.4. (K2) Kandydat potrafi wyjaśnić podejścia odpowiednie do zweryfikowania i walidacji
implementacji wymagań dotyczących użyteczności oraz spełnienia oczekiwań użytkownika.

TA-4.2.5. (K2) Kandydat potrafi wyjaśnić, na czym polega rola analityka testów podczas testowania
współdziałania, z uwzględnieniem typów defektów, których należy poszukiwać.

TA-4.2.6. (K2) Kandydat potrafi wyjaśnić, na czym polega rola analityka testów podczas testowania
przenaszalności, z uwzględnieniem typów defektów, których należy poszukiwać.

TA-4.2.7. (K4) Dla danego zestawu wymagań kandydat potrafi określić warunki testowe niezbędne do
zweryfikowania funkcjonalnych i niefunkcjonalnych charakterystyk jakościowych, które są
 w zakresie obowiązków analityka testów.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 45 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

4.1. Wprowadzenie

W poprzednim rozdziale opisano konkretne techniki, którymi może posłużyć się tester; tematem tego
rozdziału jest zastosowanie tych technik do oceny charakterystyk używanych do opisywania jakości aplikacji
lub systemów informatycznych.

Przedmiotem niniejszego sylabusa są charakterystyki jakościowe, które podlegają ocenie przez analityka
testów. Atrybuty oceniane przez technicznego analityka testów zostały opisane w sylabusie poziomu
zaawansowanego dla technicznego analityka testów [CTAL-TTA].

Opis charakterystyk jakościowych produktu bazuje na normie ISO 25010 [ISO25010]. Model jakości
oprogramowania ISO określa zestaw charakterystyk jakościowych produktu, z których każda może
zawierać charakterystyki podrzędne (podcharakterystyki). Zostały one przedstawione w poniższej tabeli
wraz ze wskazaniem, które charakterystyki i podcharakterystyki zostały opisane w sylabusie dla analityków
testów, a które w sylabusie dla technicznych analityków testów:

Charakterystyka Podcharakterystyki
Analityk
testów

Techniczny
analityk
testów

Funkcjonalność Poprawność funkcjonalna, adekwatność
funkcjonalna, kompletność funkcjonalna

X

Niezawodność Dojrzałość, tolerowanie usterek, odtwarzalność,
osiągalność

 X

Użyteczność Stosowność, łatwość nauki, łatwość obsługi,
estetyka interfejsu użytkownika, ochrona przed
błędami użytkownika, dostępność X

Wydajność Zachowanie w czasie, zużycie zasobów,
przepustowość

 X

Pielęgnowalność Analizowalność, modyfikowalność, testowalność,
modułowość, łatwość ponownego użycia

 X

Przenaszalność Zdolność adaptacyjna, instalowalność,
zastępowalność

X X

Zabezpieczenia Poufność, integralność, niezaprzeczalność,
rozliczalność, autentykacja

 X

Kompatybilność Współistnienie X

Współdziałanie X

Taki podział pracy jest stosowany w odpowiednich sylabusach ISTQB®, jednak w różnych organizacjach
może przybierać różne formy.

Aby można było sformułować i udokumentować odpowiednią strategię testów, należy zidentyfikować
czynniki ryzyka typowe dla wszystkich charakterystyk jakościowych i podcharakterystyk omówionych w tym
rozdziale. Testowanie charakterystyk jakościowych wymaga szczególnie starannego doboru właściwego
momentu w cyklu wytwarzania oprogramowania, niezbędnych narzędzi, a także dostępności
oprogramowania i dokumentacji do testowania oraz fachowej wiedzy technicznej. Bez odpowiedniej
strategii dla każdej z charakterystyk i specyficznych potrzeb związanych z jej testowaniem tester może nie
mieć do dyspozycji wystarczającej ilości czasu na odpowiednie zaplanowanie, przygotowanie i wykonanie
testów w terminie określonym w harmonogramie [Bath14]. Część tych testów, np. testowanie użyteczności,
może wymagać przydzielenia szczególnych zasobów ludzkich, szczegółowego zaplanowania,
udostępnienia specjalnych laboratoriów i konkretnych narzędzi, szczególnych umiejętności testerskich

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 46 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

oraz, w większości przypadków, dużej ilości czasu. Czasem testy użyteczności mogą być wykonywane
przez osobną grupę ekspertów ds. użyteczności (interfejsów użytkownika).

Analityk testów może nie być odpowiedzialny za charakterystyki jakościowe, które wymagają bardziej
technicznego podejścia; istotne jednak jest to, aby analityk testów był świadomy innych charakterystyk
i rozumiał pokrywające się obszary testowania. Na przykład przedmiot testów, który nie zaliczył testów
wydajnościowych, może również nie zaliczyć testów użyteczności, jeżeli działa zbyt wolno, żeby
użytkownicy mogli z niego efektywnie korzystać. Podobnie przedmiot testów, w którym występują problemy
z niektórymi modułami, nie jest prawdopodobnie gotowy do testów przenaszalności, ponieważ problemy na
niższym poziomie będzie trudniej wyizolować w zmienionym środowisku.

4.2. Charakterystyki jakościowe w testowaniu w dziedzinie biznesowej

Głównym obszarem działań analityka testów jest testowanie funkcjonalności. Przedmiotem testów
funkcjonalności jest to, „co" robi dany obiekt. Podstawą testów funkcjonalności są z reguły wymagania,
specyfikacja, konkretna wiedza z danej dziedziny lub przewidywana potrzeba. Testy funkcjonalne mają
różną formę w zależności od poziomu testów, na jakim są wykonywane, a także w zależności od cyklu
wytwarzania oprogramowania. Na przykład test funkcjonalny wykonywany podczas testów integracyjnych
sprawdza funkcjonalność łączonych poprzez interfejs modułów, które implementują jedną zdefiniowaną
funkcję. Na poziomie testów systemowych testy funkcjonalne obejmują sprawdzenie funkcjonalności całego
systemu. W systemach systemów testowanie funkcjonalności obejmuje testowanie kompleksowe całości
zintegrowanych systemów. W testach funkcjonalności stosuje się szeroki zakres technik testowania (patrz
Rozdział 3.).

W zwinnym wytwarzaniu oprogramowania testowanie funkcjonalności zwykle obejmuje następujące
elementy:

● testowanie konkretnej funkcjonalności (np. historyjek użytkownika) planowanej do
zaimplementowania w danej iteracji,

● testowanie regresji dla wszystkich niezmodyfikowanych funkcji.

Oprócz testów funkcjonalności omawianych w tym podrozdziale w zakresie odpowiedzialności analityka
testów znajdują się jeszcze dwie charakterystyki jakościowe, które uznaje się za elementy testów
niefunkcjonalnych (ukierunkowanych na sprawdzenie, „jak” przedmiot testów udostępnia funkcjonalność).

4.2.1. Testowanie poprawności funkcjonalnej

Testowanie poprawności funkcjonalnej obejmuje weryfikację zgodności aplikacji z podanymi lub
wywnioskowanymi wymaganiami i może obejmować również testowanie dokładności obliczeniowej.
W testowaniu poprawności funkcjonalnej stosuje się wiele z technik testowania opisanych w Rozdziale 3.
i często używa się specyfikacji lub wcześniejszej wersji systemu jako wyroczni testowej. Testowanie
poprawności funkcjonalnej może mieć miejsce na dowolnym poziomie testów i jest ukierunkowane na
wykrywanie niepoprawnej obsługi danych lub sytuacji.

4.2.2. Testowanie adekwatności funkcjonalnej

Testowanie adekwatności funkcjonalnej obejmuje ocenę i walidację poziomu dopasowania zestawu funkcji
do konkretnych zadań, które te funkcje mają realizować. Testowanie może być oparte na projekcie
funkcjonalnym (np. przypadkach użycia i/lub historyjkach użytkownika). Testowanie adekwatności
funkcjonalnej z reguły ma miejsce podczas testów systemowych, ale może też odbywać się na późnych
etapach testów integracyjnych. Defekty wykryte podczas tych testów wskazują, że system nie zaspokoi
potrzeb użytkownika w akceptowalny sposób.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 47 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

4.2.3. Testowanie kompletności funkcjonalnej

Celem testowania kompletności funkcjonalnej jest ustalenie pokrycia konkretnych zadań i celów
użytkownika przez zaimplementowaną funkcjonalność. Kluczowym elementem umożliwiającym
sprawdzenie kompletności funkcjonalnej jest śledzenie powiązań pomiędzy punktami specyfikacji
(np. wymaganiami, historyjkami użytkownika i przypadkami użycia), a zaimplementowaną funkcjonalnością
(np. funkcją, modułem i przepływem pracy). Pomiar kompletności funkcjonalnej może odbywać się w różny
sposób, w zależności od konkretnego poziomu testów i stosowanego cyklu wytwarzania oprogramowania.
Na przykład kompletność funkcjonalną w projekcie zwinnym można określić na podstawie
zaimplementowanych historyjek użytkownika i funkcji. Z kolei testowanie kompletności funkcjonalnej
w testowaniu integracji systemów może skupiać się na pokryciu procesów biznesowych wysokiego
poziomu.

Narzędzia do zarządzania testami zwykle obsługują opcje określania kompletności funkcjonalnej, o ile
analityk testów rejestruje informacje o powiązaniach między przypadkami testowymi a elementami
specyfikacji funkcjonalnej. Jeśli poziom kompletności jest niższy niż oczekiwano, może to oznaczać, że
system nie został w pełni zaimplementowany.

4.2.4. Testowanie współdziałania

W testach współdziałania weryfikowana jest wymiana informacji między dwoma lub większą liczbą
systemów albo modułów. Sprawdzana jest możliwość wymiany informacji i jej późniejszego wykorzystania.
Testy powinny pokrywać wszystkie przewidywane środowiska docelowe (w tym różnice w zakresie sprzętu,
oprogramowania, oprogramowania warstwy pośredniej, systemów operacyjnych itp.), aby zapewnić
prawidłowe działanie operacji wymiany danych. W rzeczywistości może to być możliwe tylko dla stosunkowo
niewielkiej liczby środowisk. W przypadku większego zbioru można ograniczyć testowanie do
reprezentatywnej grupy wybranych środowisk. W ramach specyfikacji testów współdziałania należy
zidentyfikować, skonfigurować i udostępnić zespołowi testowemu odpowiednie kombinacje środowisk
docelowych. Następnie takie środowiska zostają przetestowane za pomocą wybranych funkcjonalnych
przypadków testowych sprawdzających różnego rodzaju punkty wymiany danych w środowisku.

Współdziałanie wiąże się ze sposobem interakcji między różnymi modułami i systemami oprogramowania.
Oprogramowanie o dobrych wskaźnikach współdziałania można zintegrować z wieloma innymi systemami
bez wprowadzania w nim większych zmian i bez większego wpływu na zachowanie niefunkcjonalne. Jako
miary współdziałania można użyć liczby koniecznych zmian i nakładu pracy potrzebnego na ich
implementację i przetestowanie.

Testowanie współdziałania oprogramowania może na przykład koncentrować się na następujących
cechach projektowych:

● wykorzystanie branżowych standardów komunikacji takich jak XML,
● zdolność automatycznego wykrywania potrzeb komunikacyjnych związanych z systemami,

z którymi oprogramowanie współdziała, i odpowiedniego dostosowania mechanizmów komunikacji.

Testowanie współdziałania może być szczególnie istotne w przypadku następujących produktów:

● oprogramowania do powszechnej sprzedaży (ang. Commercial of-the-shelf) i gotowych narzędzi,
● aplikacji stanowiących systemy systemów,
● systemów wykorzystujących technologię Internetu rzeczy (IoT),
● usług internetowych komunikujących się z innymi systemami.

Tego rodzaju testy wykonuje się podczas testowania integracji modułów i testowania integracji systemów.
Na poziomie testów integracyjnych systemów tego rodzaju testy przeprowadza się po ukończeniu systemu
w celu ustalenia, jak dobrze współdziała on z innymi systemami. Systemy mogą współdziałać na różnych
poziomach, więc analityk testów musi rozumieć te interakcje i umieć stworzyć warunki, które umożliwią
przetestowanie różnych interakcji. Na przykład jeżeli między dwoma systemami ma zachodzić wymiana

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 48 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

danych, analityk testów musi być w stanie wygenerować niezbędne dane i transakcje potrzebne do
dokonania takiej wymiany. Należy przy tym pamiętać, że nie wszystkie interakcje mogą być jasno
zdefiniowane w dokumentacji wymagań. Definicje wielu z nich mogą się pojawić dopiero w dokumentacji
architektury i projektu systemu. Analityk testów musi być przygotowany do przeanalizowania tych
dokumentów w celu ustalenia punktów wymiany informacji między systemami oraz między systemem
a jego środowiskiem, aby zapewnić przetestowanie wszystkich takich punktów. W testowaniu
współdziałania stosuje się takie techniki jak podział na klasy równoważności, analiza wartości brzegowych,
tablice decyzyjne, diagramy przejść pomiędzy stanami, przypadki użycia i testowanie sposobem par.
Wykrywane defekty z reguły dotyczą niepoprawnej wymiany danych między modułami wchodzącymi ze
sobą w interakcje.

4.2.5. Ocena użyteczności

Analityk testów często zajmuje się koordynowaniem i wsparciem procesu oceny użyteczności. Może to
obejmować specyfikację testów użyteczności i występowanie w roli moderatora prowadzącego testy
wspólnie z użytkownikami. Aby skutecznie realizować swoje zadania, analityk testów musi rozumieć główne
aspekty, cele i podejścia związane z takim rodzajem testowania. Szczegółowe informacje wykraczające
poza zakres niniejszej sekcji można znaleźć w specjalistycznym sylabusie ISTQB® dotyczącym testowania
użyteczności [ISTQB_UT_SYL].

Istotne jest zrozumienie, dlaczego użytkownicy mają problemy z korzystaniem z systemu oraz dlaczego ich
doświadczenia nie są pozytywne (np. podczas korzystania z oprogramowania do rozrywki). Aby to
osiągnąć, należy przede wszystkim uwzględnić fakt, że pojęcie „użytkownik” może odnosić się do różnych
profili osób (tzw. person), od ekspertów IT poprzez dzieci, aż po osoby niepełnosprawne.

4.2.5.1. Aspekty użyteczności
W tej sekcji zostaną omówione następujące aspekty użyteczności:

● użyteczność w rozumieniu standardu ISO 25010,
● doświadczenie użytkownika (UX) jako uogólnienie użyteczności,
● dostępność jako podcharakterystyka użyteczności.

Użyteczność
Testy użyteczności koncentrują się na defektach oprogramowania, które mają wpływ na możliwość
wykonywania zadań przez użytkowników za pośrednictwem interfejsu użytkownika. Takie defekty mogą
utrudnić użytkownikom realizację ich celów w sposób skuteczny, wydajny i satysfakcjonujący. Problemy
dotyczące użyteczności mogą prowadzić do nieporozumień, błędów, opóźnień i zwykłych awarii w trakcie
realizacji zadań przez użytkowników.

Poniżej podano listę podcharakterystyk użyteczności według standardu [ISO 25010] (ich definicje znajdują
się w słowniku [ISTQB_GLOSSARY]):

● łatwość nauki,
● łatwość obsługi,
● estetyka interfejsu użytkownika (tj. atrakcyjność),
● ochrona przed błędami użytkownika,
● dostępność (patrz poniżej).

Doświadczenie użytkownika (UX)
Ocena doświadczenia użytkownika obejmuje całe doświadczenie użytkownika związane z przedmiotem
testów, a nie tylko bezpośrednią interakcję. Jest to szczególnie istotne w przypadku przedmiotów testów,
dla których kluczowym czynnikiem umożliwiającym sukces rynkowy jest przyjemność obsługi i satysfakcja
użytkownika.

Typowe czynniki wpływające na doświadczenie użytkownika to m.in.:

● wizerunek marki (tj. użytkownicy mają zaufanie do producenta),

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 49 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

● interaktywne zachowanie,
● pomoc związana z przedmiotem testów (m.in. system pomocy, wsparcie i szkolenia).

Dostępność
Należy uwzględnić dostępność oprogramowania dla użytkowników, którzy mają szczególne potrzeby lub
ograniczenia w korzystaniu z niego, m. in. osób niepełnosprawnych. Podczas testowania dostępności
należy uwzględnić właściwe standardy, np. wytyczne Web Content Accessibility Guidelines (WCAG) oraz
uregulowania prawne, takie jak ustawy o przeciwdziałaniu dyskryminacji ze względu na niepełnosprawność
(Disability Discrimination Act — Irlandia Północna, Australia), ustawa o równości szans (Equality Act 2010
— Anglia, Szkocja, Walia) czy artykuł 508 (Section 508 — Stany Zjednoczone). Podobnie jak w przypadku
użyteczności, dostępnością należy zainteresować się już w fazie projektowania. Testy zaczyna się często
na poziomie testów integracyjnych i kontynuuje przez fazę testów systemowych do poziomu testów
akceptacyjnych. O defektach mówi się z reguły wówczas, gdy oprogramowanie nie spełnia właściwych
uregulowań prawnych lub standardów.

Typowe miary związane ze zwiększaniem dostępności koncentrują się na możliwości interakcji z aplikacją
przez użytkowników niepełnosprawnych. Obejmuje to między innymi:

● funkcje rozpoznawania głosu do obsługi wprowadzania danych,
● zapewnienie prezentacji treści innych niż tekstowe w postaci odpowiednika tekstowego,
● możliwość zmiany rozmiaru tekstu bez utraty zawartości lub funkcjonalności.

Wytyczne dotyczące dostępności są pomocne dla analityka testów, ponieważ stanowią źródło informacji
i list kontrolnych, które można wykorzystać podczas testowania (przykłady takich wytycznych można
znaleźć w dokumencie [ISTQB_UT_SYL]). Ponadto dostępne są narzędzia i wtyczki do przeglądarek, które
ułatwiają testerom wykrywanie problemów związanych z dostępnością, takich jak nieprawidłowy dobór
palety kolorów na stronach internetowych, niezgodny z wytycznymi dotyczącymi dostępu dla osób
dotkniętych ślepotą barw (daltonizmem).

4.2.5.2. Metody oceny użyteczności
Użyteczność, doświadczenie użytkownika i dostępność można testować, korzystając z jednej
z następujących metod:

● testowania użyteczności,
● przeglądów użyteczności,
● ankiet i kwestionariuszy użytkowników.

Testowanie użyteczności
Podczas testowania użyteczności sprawdza się, czy użytkownicy mogą łatwo korzystać lub nauczyć się
korzystać z systemu w celu osiągnięcia określonego celu w konkretnym kontekście. Testowanie
użyteczności ma mierzyć następujące cechy:

● skuteczność — możliwość osiągnięcia przez użytkowników przy użyciu przedmiotu testów
określonych celów z zachowaniem poprawności i kompletności w określonym kontekście użycia;

● efektywność — możliwość uzyskania przez użytkowników przy użyciu przedmiotu testów określonej
efektywności w określonym kontekście użycia przy odpowiednich nakładach zużytych zasobów;

● satysfakcję — możliwość zadowolenia użytkowników z przedmiotu testów w określonym kontekście
użycia.

Należy zauważyć, że projektowanie i specyfikowanie testów użyteczności analityk testów wykonuje często
we współpracy z testerami dysponującymi specjalistycznymi kompetencjami w dziedzinie testowania
użyteczności, a także z projektantami interfejsu obsługi użytkownika, którzy rozumieją proces projektowania
zorientowany na użytkownika (więcej informacji zawiera dokument [ISTQB_UT_SYL]).

Przeglądy użyteczności
Inspekcje i przeglądy to forma testowania prowadzonego pod kątem oceny użyteczności, pozwalająca
zwiększyć stopień zaangażowania użytkowników. To podejście może przyczynić się do obniżenia kosztów,

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 50 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

ponieważ umożliwia wykrycie problemów związanych z użytecznością w specyfikacji wymagań
i w projektach na wczesnych etapach cyklu wytwarzania oprogramowania. W celu zidentyfikowania
problemów z użytecznością podczas projektowania można wykorzystać ocenę heurystyczną
(systematyczną inspekcję projektu interfejsu użytkownika pod kątem użyteczności), aby można było
zaradzić tym problemom w ramach iteracyjnego procesu projektowania. Wymaga to zaangażowania
niewielkiego zespołu oceniającego, który zbada interfejs i oceni jego zgodność
z uznawanymi zasadami użyteczności („heurystyki”). Przeglądy zyskują na skuteczności wraz
z widocznością interfejsu użytkownika. Na przykład, zwykle łatwiej zrozumieć i zinterpretować przykładowe
zrzuty ekranów niż słowny opis funkcjonalności danego ekranu. Wizualizacja jest istotna dla dokonania
odpowiedniego przeglądu dokumentacji pod kątem użyteczności.

Ankiety i kwestionariusze dotyczące użytkowników
Do gromadzenia obserwacji i informacji zwrotnych związanych z zachowaniem użytkowników systemu
można zastosować techniki ankiet i kwestionariuszy. Standardowe, ogólnodostępne ankiety, takie jak
inwentarz pomiarów użyteczności oprogramowania ang. Software Usability Measurement Inventory (SUMI)
i inwentarz analizy i pomiaru stron internetowych ang. Website Analysis and Measurement Inventory
(WAMMI) umożliwiają porównywanie rezultatów ze zgromadzonymi w bazie danych pomiarami dokonanymi
w innych projektach. Co więcej, jako że ankieta SUMI uwzględnia konkretne metryki użyteczności, może
zapewnić zestaw kryteriów zakończenia/akceptacji.

4.2.6. Testowanie przenaszalności

Testy przenaszalności dotyczą łatwości przenoszenia systemu lub modułu oprogramowania do docelowego
środowiska, zarówno po raz pierwszy (jako nowa instalacja), jak i z istniejącego środowiska.

Klasyfikacja charakterystyk jakościowych produktów ISO 25010 obejmuje następujące podcharakterystyki
przenaszalności:

● instalowalność,
● zdolność adaptacyjna,
● zastępowalność.

Zadania związane z identyfikacją ryzyka i projektowaniem testów charakterystyk przenaszalności realizują
analityk testów i techniczny analityk testów (patrz [ISTQB_ALTTA_SYL], podrozdział 4.7.).

4.2.6.1. Testowanie instalowalności
Testowanie instalowalności przeprowadza się na oprogramowaniu z wykorzystaniem procedur używanych
do jego instalowania i deinstalowania w docelowym środowisku.

Typowe cele testowania instalowalności, które powinien uwzględnić analityk testów, to między innymi:

● Sprawdzenie, czy różne konfiguracje oprogramowania można pomyślnie zainstalować.
W sytuacjach, w których występuje wiele parametrów konfiguracyjnych, analityk testów może
zastosować technikę testowania sposobem par w celu ograniczenia liczby kombinacji parametrów
i skoncentrować się na szczególnie interesujących konfiguracjach (np. najczęściej używanych).

● Testowanie poprawności procedur instalacji i deinstalacji.
● Wykonywanie testów funkcjonalnych po instalacji lub deinstalacji w celu wykrycia ewentualnych,

wprowadzonych defektów (np. niepoprawnych konfiguracji i niedostępnych funkcji).
● Identyfikowanie problemów związanych z użytecznością w procedurach instalacji i deinstalacji, na

przykład w celu sprawdzenia, czy użytkownicy otrzymują podczas wykonywania procedury
zrozumiałe instrukcje, odpowiedzi i komunikaty o błędach.

4.2.6.2. Testowanie zdolności adaptacyjnej
Testowanie zdolności adaptacyjnej umożliwia sprawdzenie, czy dana aplikacja może być zaadaptowana
efektywnie i wydajnie do poprawnego funkcjonowania we wszystkich założonych środowiskach docelowych
(sprzęt, oprogramowanie, warstwa pośrednia, system operacyjny, chmura itd.). Analityk testów wspiera
testowanie zdolności adaptacyjnej poprzez identyfikację planowanych środowisk docelowych (np. wersje

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 51 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

obsługiwanych mobilnych systemów operacyjnych, różne wersje obsługiwanych przeglądarek) oraz
poprzez projektowanie testów pokrywających kombinacje tych środowisk. Następnie środowiska docelowe
zostają przetestowane za pomocą wybranych funkcjonalnych przypadków testowych sprawdzających
różnego rodzaju komponenty obecne w środowisku.

4.2.6.3 Testowanie zastępowalności
Testowanie zastępowalności koncentruje się na możliwości zastąpienia w systemie modułów
oprogramowania lub ich wersji przez inne moduły lub wersje. Może to być szczególnie przydatne
w architekturach opartych na technologii Internetu rzeczy (IoT), w których często występuje wymiana
różnych urządzeń i instalacja oprogramowania. Na przykład sprzęt używany w magazynie do rejestrowania
i kontroli stanu zapasów może zostać zastąpiony przez bardziej zaawansowane urządzenie (np.
zawierające lepszy skaner), a zainstalowane oprogramowanie może zostać zaktualizowane i zastąpione
nową wersją, która umożliwia automatyczne tworzenie zamówień i wysyłanie ich do systemu dostawcy.
Testy zastępowalności mogą być wykonywane przez analityka testów równolegle z testami integracji
funkcjonalności, jeśli do integracji z kompletnym systemem dostępny jest więcej niż jeden opcjonalny moduł.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 52 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

5. Przeglądy — 120 minut

Słowa kluczowe
przegląd oparty na liście kontrolnej

Cele nauczania dotyczące przeglądów

5.1. Wprowadzenie
Nie określono celów nauczania.

5.2 Korzystanie z list kontrolnych podczas przeglądów
TA-5.2.1. (K3) Kandydat potrafi zidentyfikować problemy w specyfikacji wymagań zgodnie z listą

kontrolną podaną w sylabusie.
TA-5.2.2. (K3) Kandydat potrafi zidentyfikować problemy w historyjce użytkownika zgodnie z listą

kontrolną podaną w sylabusie.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 53 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

5.1. Wprowadzenie

Analityk testów musi aktywnie uczestniczyć w procesie przeglądu i korzystać ze swojej unikalnej
perspektywy. Prawidłowo dokonany przegląd może być najbardziej opłacalnym elementem,
przyczyniającym się do ogólnej jakości dostarczanych produktów.

5.2. Korzystanie z list kontrolnych podczas przeglądów

Przeglądy oparte na listach kontrolnych to najczęściej stosowana przez analityków testów technika
przeglądu podstawy testów. Podczas przeglądów używa się list kontrolnych, aby przypomnieć uczestnikom
o sprawdzeniu w ramach przeglądu konkretnych punktów. Pomagają one również wyeliminować
z przeglądu czynnik ludzki: „używamy tej samej listy we wszystkich przeglądach, nie tylko w odniesieniu do
twojego produktu pracy”.

Przegląd oparty na listach kontrolnych może być ogólny, do zastosowania we wszelkiego rodzaju
przeglądach, lub skoncentrowany na określonych charakterystykach jakościowych, obszarach albo typach
dokumentów. Na przykład ogólna lista kontrolna może służyć do weryfikacji ogólnych właściwości
dokumentu, takich jak unikalny identyfikator, brak pozostawionych adnotacji „do uzupełnienia”, właściwe
formatowanie i tym podobne elementy zgodności z szablonem. Lista przeznaczona konkretnie do
przeglądów dokumentacji wymagań może zawierać takie punkty, jak sprawdzenie odpowiedniego użycia
terminów „będzie” i „powinien”, testowalności każdego z uzgodnionych wymagań itp.

Również sam format wymagań może wskazywać, jakiego rodzaju lista kontrolna powinna zostać
zastosowana. Do dokumentacji wymagań wyrażonych w języku naturalnym należy zastosować inne kryteria
przeglądu niż do dokumentacji wymagań opartych na diagramach.

Listy kontrolne mogą być również ukierunkowane na określony aspekt, np.:

● kwalifikacje programisty/architekta albo kompetencje testera – w przypadku analityka testów
odpowiednia będzie lista kontrolna zorientowana na kwalifikacje testerskie,

● określony poziom ryzyka (np. w systemach krytycznych ze względów bezpieczeństwa) — listy
kontrolne zazwyczaj zawierają wówczas konkretne informacje związane z danym poziomem
ryzyka,

● konkretną technikę testowania — lista kontrolna zawiera wówczas informacje niezbędne do
zastosowania danej techniki (np. reguły, które mają być reprezentowane w tablicy decyzyjnej),

● określony element specyfikacji, np. wymaganie, przypadek użycia lub historyjka użytkownika —
zagadnienia te omówiono w kolejnych podrozdziałach; takie listy kontrolne koncentrują się zwykle
na innych elementach niż listy używane przez technicznego analityka testów do przeglądów kodu
oraz architektury.

5.2.1. Przeglądy wymagań

Na liście kontrolnej do przeglądów wymagań mogą znaleźć się następujące elementy:
● źródło danego wymagania (np. osoba lub dział),
● testowalność każdego z wymagań,
● priorytet każdego wymagania,
● kryteria akceptacji dla każdego wymagania,
● dostępność struktury wywołań przypadku użycia, o ile ma ona zastosowanie,
● jednoznaczna identyfikacja każdego wymagania, przypadku użycia lub historyjki użytkownika,
● kontrola wersji każdego wymagania, przypadku użycia lub historyjki użytkownika,
● możliwość śledzenia każdego wymagania z wymagań biznesowych/marketingowych,
● możliwość śledzenia związków między wymaganiami a/lub przypadkami użycia (o ile są

stosowane),
● zastosowanie spójnej terminologii (np. korzystanie ze słownika).

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 54 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Należy pamiętać, że jeśli wymaganie nie jest testowalne — to znaczy jest zdefiniowane w taki sposób, że
analityk testów nie może ustalić, w jaki sposób je przetestować — wówczas w tym wymaganiu występuje
defekt. Na przykład wymaganie „Oprogramowanie powinno być bardzo przyjazne dla użytkownika” nie jest
testowalne. Jak analityk testów ma ustalić, czy oprogramowanie jest przyjazne dla użytkownika, a tym
bardziej „bardzo przyjazne dla użytkownika”? Gdyby zamiast tego wymaganie zawierało stwierdzenie
„Oprogramowanie musi być zgodne ze standardami użyteczności określonymi w dokumencie standardów
użyteczności, wersja xxx” i gdyby taki dokument standardów użyteczności istniał, wówczas to wymaganie
byłoby testowalne. Jest to też wymaganie nadrzędne, ponieważ dotyczy wszystkich elementów interfejsu
użytkownika. W rozbudowanej aplikacji mogłaby w takiej sytuacji istnieć konieczność wyprowadzenia
z jednego wymagania wielu szczegółowych przypadków testowych. Kluczowe znaczenie miałoby również
prześledzenie powiązań tego wymagania (lub standardów użyteczności z zewnętrznego dokumentu)
z przypadkami testowymi, ponieważ w przypadku zmiany przywoływanej specyfikacji użyteczności
należałoby dokonać przeglądu i odpowiednich modyfikacji wszystkich przypadków testowych.

Wymaganie jest również nietestowalne, jeżeli tester nie ma możliwości ustalenia, czy test został zaliczony,
czy nie, lub nie jest w stanie zbudować testu, który może zostać zaliczony lub niezaliczony. Na przykład
wymaganie „System będzie dostępny przez 100% czasu, 24 godziny na dobę, 7 dni w tygodniu, 365 (lub
366) dni w roku” jest nietestowalne.

Prosta lista kontrolna2 do przeglądów przypadków użycia może zawierać następujące pytania:

● Czy podstawowe zachowanie (ścieżka) jest jasno zdefiniowane?
● Czy zostały zidentyfikowane wszystkie zachowania (ścieżki) alternatywne wraz z obsługą błędów?
● Czy zostały zdefiniowane komunikaty interfejsu użytkownika?
● Czy istnieje tylko jedna ścieżka podstawowa (tak powinno być – jeżeli jest inaczej, mamy do

czynienia
z więcej niż jednym przypadkiem użycia)?

● Czy każde z zachowań jest testowalne?

5.2.2. Przeglądy historyjek użytkownika

W projektach zwinnego wytwarzania oprogramowania (Agile) wymagania mają zwykle postać historyjek
użytkownika. Takie historyjki reprezentują niewielkie, możliwe do zaprezentowania, wycinki funkcjonalności.
Przypadek użycia opisuje transakcję użytkownika, obejmującą różne obszary funkcjonalne, natomiast
historyjka użytkownika jest bardziej ograniczona, a jej zakres jest uzależniony od czasu potrzebnego na
zaimplementowanie danej funkcjonalności. Lista kontrolna3 do przeglądów historyjek użytkownika może
zawierać następujące pytania:

● Czy historyjka jest odpowiednia dla docelowej iteracji/sprintu?
● Czy historyjka jest napisana z punktu widzenia osoby, która zgłosiła odpowiednie żądanie?
● Czy zostały zdefiniowane kryteria akceptacji i czy są one testowalne?
● Czy historyjka opisuje dobrze zdefiniowaną, odrębną funkcję?
● Czy dana historyjka jest niezależna od pozostałych?
● Czy historyjce przypisano priorytet?
● Czy historyjka została zapisana w powszechnie stosowanym formacie:

„Jako <typ użytkownika> chcę <potrzeba>, żeby <cel do osiągnięcia>” [Cohn04]?

2 W pytaniu egzaminacyjnym znajdzie się podzbiór elementów listy kontrolnej przypadków użycia, na
podstawie którego należy udzielić odpowiedzi.
3 W pytaniu egzaminacyjnym znajdzie się podzbiór elementów listy kontrolnej historyjek użytkownika,
na podstawie którego należy udzielić odpowiedzi.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 55 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

Jeżeli w historyjce jest zdefiniowany nowy interfejs, wówczas wskazane jest zastosowanie ogólnej listy
kontrolnej dla historyjek (takiej, jak podano powyżej) oraz szczegółowej listy kontrolnej dla interfejsów
użytkownika.

5.2.3. Dostosowywanie list kontrolnych

Listę kontrolną można modyfikować (dostosowywać do potrzeb) w oparciu o następujące czynniki:
● organizacja (np. w celu uwzględnienia polityk, standardów i praktyk firmowych, ograniczeń

prawnych),
● konkretny projekt lub konkretne prace rozwojowe (np. cel, standardy techniczne, czynniki ryzyka);
● produkt pracy poddawany przeglądowi (np. przeglądy kodu mogą być dostosowywane do specyfiki

konkretnych języków programowania),
● poziom ryzyka dla produktu pracy poddawanego przeglądowi,
● techniki testowania, które mają zostać zastosowane.

Prawidłowo sporządzone listy kontrolne umożliwiają wykrycie problemów oraz ułatwiają rozpoczęcie
dyskusji o dodatkowych elementach weryfikacji, które mogą nie być uwzględnione na liście. Łączenie
różnych list kontrolnych jest dobrym sposobem na zapewnienie jak najwyższej jakości produktu pracy
w wyniku przeglądu. Wykorzystanie standardowych list kontrolnych, takich jak listy przywoływane
w sylabusie poziomu podstawowego, oraz opracowanie specyficznych dla danej organizacji list kontrolnych
podobnych do tych wskazanych powyżej ułatwią analitykowi testów efektywne dokonywanie przeglądów.

Więcej informacji o przeglądach i inspekcjach można znaleźć w [Gilb93] i [Wiegers03]. Dalsze przykłady list
kontrolnych znajdują się w źródłach przywoływanych w podrozdziale 7.4.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 56 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

6. Narzędzia testowe i automatyzacja testów — 90 minut

Słowa kluczowe
projekt testów, przygotowywanie danych testowych, skrypt testowy, testowanie oparte na słowach
kluczowych, wykonywanie testu

Cele nauczania dotyczące narzędzi testowych i automatyzacji testów

6.1. Wprowadzenie
Nie określono celów nauczania.

6.2 Testowanie oparte na słowach kluczowych
TA-6.2.1. (K3) Dla danego scenariusza kandydat potrafi określić działania, które powinien podjąć analityk

testów w projekcie testowym opartym na słowach kluczowych.

6.3 Rodzaje narzędzi testowych
TA-6.3.1. (K2) Kandydat potrafi wyjaśnić sposób wykorzystania i rodzaje narzędzi testowych

stosowanych w projektowaniu testów, przygotowywaniu danych testowych i wykonywaniu
testów.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 57 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

6.1. Wprowadzenie

Narzędzia testowe mogą znacznie zwiększyć efektywność i dokładność testowania. W niniejszym rozdziale
opisano narzędzia testowe i podejścia do automatyzacji stosowane przez analityków testów. Warto
podkreślić, że – tworząc rozwiązania dla testów automatycznych – analityk testów współpracuje
z programistami, inżynierami testów automatycznych i technicznymi analitykami testów. Szczególnie
znaczący jest udział analityka testów w testowaniu opartym na słowach kluczowych, w której
wykorzystywana jest jego wiedza na temat dziedziny biznesowej i funkcjonalności systemu.

Dalsze informacje na temat automatyzacji testów i roli inżyniera testów automatycznych znajdują się
w sylabusie ISTQB® poziomu zaawansowanego dla inżyniera testów automatycznych [ISTQB_TAE_SYL].

6.2. Testowanie oparte na słowach kluczowych

Testowanie oparte na słowach kluczowych jest jednym z podstawowych podejść stosowanych
w automatyzacji testów. Do zadań analityka testów należy dostarczenie najważniejszych informacji
wejściowych, czyli słów kluczowych i danych.

Słów kluczowych (czasem nazywanych słowami akcji) używa się przede wszystkim, choć nie wyłącznie,
jako reprezentacji interakcji biznesowych z systemem na wysokim poziomie (np. „wycofaj zamówienie”).
Każde słowo kluczowe reprezentuje zwykle szereg szczegółowych interakcji między aktorem a testowanym
systemem. Sekwencje słów kluczowych (w tym odpowiednie dane testowe) służą do określania przypadków
testowych [Buwalda02].

Podczas automatyzowania testu słowo kluczowe implementuje się w postaci jednego lub kilku
wykonywalnych skryptów testowych. Narzędzia odczytują przypadki testowe zapisane jako ciąg słów
kluczowych, które wywołują odpowiednie skrypty testowe implementujące funkcjonalność słowa
kluczowego. Skrypty są zbudowane modularnie, aby łatwo je było odwzorowywać na konkretne słowa
kluczowe. Do zaimplementowania takich modułowych skryptów konieczna jest umiejętność
programowania.

Podstawowe korzyści płynące z testowania opartego na słowach kluczowych to:

● słowa kluczowe dotyczące konkretnej aplikacji lub dziedziny biznesowej mogą być definiowane
przez ekspertów z danej dziedziny; specyfikowanie przypadków testowych może dzięki temu
przebiegać efektywniej,

● osoba dysponująca głównie wiedzą dziedzinową może odnieść korzyść z automatycznie
wykonywanych przypadków testowych (po zaimplementowaniu słów kluczowych w postaci
skryptów) bez konieczności rozumienia kodu automatyzacji,

● modułowa technika pisania testów ułatwia efektywne utrzymanie przypadków testowych przez
inżyniera testów automatycznych po wprowadzeniu zmian w funkcjonalności i interfejsie
testowanego oprogramowania [Bath14],

● specyfikacja przypadków testowych jest niezależna od ich implementacji.

Do zadań analityka testów zwykle należy utworzenie i utrzymanie danych związanych ze słowami
kluczowymi/słowami akcji. Należy pamiętać, że do zaimplementowania słów kluczowych niezbędne jest
przygotowanie skryptów. Po zdefiniowaniu słów kluczowych i używanych danych osoba odpowiedzialna za
automatyzację testów (np. techniczny analityk testów lub inżynier testów automatycznych) przekłada słowa
kluczowe związane z procesem biznesowym i działania niższego poziomu na skrypty testów
automatycznych.

Testowanie oparte na słowach kluczowych odbywa się z reguły w fazie testów systemowych, ale prace nad
kodem mogą rozpocząć się już w fazie projektowania testów. W środowisku iteracyjnym, zwłaszcza

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 58 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

w wypadku stosowania mechanizmów ciągłej integracji i ciągłego wdrażania, projektowanie testów
automatycznych jest również procesem ciągłym.

Po zdefiniowaniu wejściowych słów kluczowych i utworzeniu danych, analityk testów przejmuje
odpowiedzialność za wykonanie skryptów testowych zawierających słowa kluczowe i za analizę wszelkich
napotkanych awarii.

W przypadku wykrycia anomalii, analityk testów musi wziąć udział w badaniu przyczyny awarii, aby
stwierdzić, czy defekt powodują słowa kluczowe, dane wejściowe, same skrypty testów automatycznych
czy testowana aplikacja. Pierwszym krokiem analizy problemu jest z reguły wykonanie tego samego testu
przy użyciu tych samych danych manualnie, aby sprawdzić, czy awaria jest spowodowana przez aplikację.
Jeżeli tym razem awaria nie wystąpi, analityk testów powinien przeanalizować sekwencję testów, która
doprowadziła do awarii, aby sprawdzić, czy problem nie wystąpił w jednym z wcześniejszych kroków
(np. zostały wprowadzone niepoprawne dane wejściowe), a defekt ujawnił się później w toku przetwarzania.
Jeżeli analityk testów nie jest w stanie ustalić przyczyny awarii, to zgromadzone podczas analizy problemu
informacje powinny zostać przekazane technicznemu analitykowi testów lub programiście do dalszego
zbadania.

6.3. Rodzaje narzędzi testowych

Znaczna część prac wykonywanych przez analityka testów wymaga skutecznego wykorzystania narzędzi.
Tę skuteczność potęgują jego:

● wiedza, jakie narzędzia należy zastosować,
● świadomość, że dzięki zastosowaniu narzędzi można zwiększyć efektywność wysiłku testowego

(np. by zapewnić lepsze pokrycie w przewidzianym czasie).

6.3.1. Narzędzia do projektowania testów

Narzędzia do projektowania testów ułatwiają tworzenie przypadków testowych i danych testowych
używanych podczas testowania. Narzędzia te mogą korzystać z dokumentacji wymagań w określonych
formatach, modeli (np. UML) lub z danych wprowadzanych przez analityka testów. Narzędzia do
projektowania testów są często projektowane i budowane z myślą o współdziałaniu z konkretnymi formatami
i określonymi narzędziami takimi jak konkretne narzędzia do zarządzania wymaganiami.

Narzędzia do projektowania testów mogą dostarczyć analitykowi testów informacje przydatne do ustalenia
typów testów, które są konieczne do osiągnięcia żądanego poziomu pokrycia, poziomu zaufania do systemu
lub wykonania działań związanych z łagodzeniem ryzyka. Na przykład narzędzia drzewa klasyfikacji
generują (i wyświetlają) zestawy kombinacji potrzebnych do uzyskania pełnego pokrycia zgodnie
z wybranym kryterium pokrycia. Na podstawie tych informacji analityk testów może następnie ustalić, jakie
przypadki testowe muszą zostać wykonane.

6.3.2. Narzędzia do przygotowywania danych testowych

Narzędzia do przygotowywania danych testowych przynoszą następujące korzyści:
● Możliwość przeanalizowania dokumentów takich jak dokument wymagań, a nawet kodu

źródłowego, w celu ustalenia danych wymaganych do osiągnięcia wymaganego poziomu pokrycia
produktu podczas testowania.

● Możliwość pobrania zestawu danych z systemu produkcyjnego i „wyczyszczenia” lub anonimizacji
w celu usunięcia wszelkich danych osobowych, jednak z zachowaniem wewnętrznej spójności
danych. Wyczyszczone dane można następnie wykorzystać do testowania, nie ryzykując wycieku
lub niezgodnego z przeznaczeniem wykorzystania danych osobowych. Jest to szczególnie ważne
w sytuacjach, gdy potrzebne są duże ilości realistycznych danych i gdy istnieje ryzyko związane
z zabezpieczeniami i prywatnością danych.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 59 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

● Możliwość wygenerowania syntetycznych danych testowych na podstawie podanych zestawów
parametrów wejściowych (np. do testów losowych). Niektóre takie narzędzia umożliwiają
przeanalizowanie struktury bazy danych w celu ustalenia, jakie dane wejściowe powinien podać
analityk testów.

6.3.3 Narzędzia do wykonywania testów automatycznych

Narzędzia do wykonywania testów są używane na wszystkich poziomach testów w celu wykonania testów
automatycznych i sprawdzenia ich rzeczywistych rezultatów. Narzędzia do wykonywania testów
wykorzystuje się z reguły do jednego lub więcej z następujących celów:

● obniżenia kosztów (nakładu pracy i/lub czasu),
● wykonania większej liczby testów,
● wykonania tego samego testu w różnych środowiskach,
● zapewnienia większej powtarzalności wykonywania testów,
● wykonania testów, których nie da się wykonać manualnie (np. testów walidacji dużych zbiorów

danych).

Cele te często nakładają się na główne cele zwiększenia pokrycia przy jednoczesnym obniżeniu kosztów.

Najwyższy zwrot z inwestycji w narzędzia do automatyzacji testów uzyskuje się z reguły w przypadku
automatyzowania testów regresji ze względu na niewielkie zapotrzebowanie na ich pielęgnację oraz na ich
powtarzalne wykonywanie. Efektywna jest też automatyzacja testów dymnych ze względu na ich częste
wykonywanie, potrzebę szybkiego uzyskania rezultatów testu oraz, mimo potencjalnie wyższych kosztów
pielęgnacji, możliwość automatycznego oceniania nowych wersji oprogramowania w środowisku ciągłej
integracji.

Narzędzia do wykonywania testów powszechnie wykorzystuje się w testach systemowych i integracyjnych.
Niektóre narzędzia, zwłaszcza narzędzia do testów interfejsów API, można stosować również w testach
modułowych. Wykorzystanie narzędzi tam, gdzie są one najbardziej przydatne, pomoże zwiększyć zwrot
z inwestycji.

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 60 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

7. Dokumenty pomocnicze

7.1. Standardy

• [ISO25010] ISO/IEC 25010 (2011) Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) System and software quality models (Rozdział 4.)

• [ISO29119-4] ISO/IEC/IEEE 29119-4 Software and Systems Engineering – Software Testing —
Part 4, Test Techniques, 2015

• [OMG-DMN] Object Management Group: OMG® Decision Model and NotationTM, Version 1.3.,

December 2019; url: www.omg.org/spec/DMN/ (Rozdział 8.)

• [OMG-UML] Object Management Group: OMG® Unified Modeling Language®, Version 2.5.1.,

December 2017; url: www.omg.org/spec/UML/

• [RTCA DO-178C/ED-12C] Software Considerations in Airborne Systems and Equipment
Certification, RTCA/EUROCAE ED12C, 2013 (Rozdział 1.)

7.2. Dokumenty ISTQB® i IREB®

● [IREB_CPRE] IREB® Certified Professional for Requirements Engineering
sylabus poziomu podstawowego, wersja 2.2.2., 2017

● [ISTQB_AL_OVIEW] Wprowadzenie do poziomu zaawansowanego ISTQB®, wersja 2.0
● [ISTQB_ALTTA_SYL] Sylabus ISTQB® poziomu zaawansowanego — Techniczny analityk

testów, wersja 2019
● [ISTQB_FL_SYL] Sylabus ISTQB® poziomu podstawowego, wersja 2018
● [ISTQB_GLOSSARY] Słownik wyrażeń związanych z testowaniem, https://glossary.istqb.org/

● [ISTQB_TAE_SYL] ISTQB® Advanced Level Test Automation Engineer Syllabus, v. 2017

● [ISTQB_UT_SYL] ISTQB® Foundation Level Specialist Syllabus Usability Testing, v. 2018

7.3. Książki i artykuły

● [Bath14] Graham Bath, Judy McKay, „The Software Test Engineer’s Handbook (2nd Edition)”, Rocky
Nook, 2014, ISBN 978-1-933952-24-6

● [Beizer95] Boris Beizer, „Black-box Testing”, John Wiley & Sons, 1995, ISBN 0-471-12094-4
● [Black02] Rex Black, „Managing the Testing Process (2nd Edition)”, John Wiley & Sons: New York,

2002, ISBN 0-471-22398-0
● [Black07] Rex Black, „Pragmatic software testing: Becoming an effective and efficient test

professional”, John Wiley and Sons, 2007, ISBN 978-0-470-12790-2
● [Black09] Rex Black, „Advanced Software Testing, Volume 1”, Rocky Nook, 2009, ISBN 978-1-

933-952-19-2
● [Buwalda02] Hans Buwalda, „Integrated Test Design and Automation: Using the Test Frame

Method”, Addison-Wesley Longman, 2002, ISBN 0-201-73725-6
● [Chow1978] T.S. Chow, Testing Software Design Modeled by Finite-State Machines, IEEE

Transactions on Software Engineering vol. SE-4, issue 3, May 1978, pp. 178-187
● [Cohn04] Mike Cohn, „User Stories Applied: For Agile Software Development”, Addison-Wesley

Professional, 2004, ISBN 0-321-20568-5
● [Copeland04] Lee Copeland, „A Practitioner's Guide to Software Test Design”, Artech House, 2004,

ISBN 1-58053-791-X
● [Craig02] Rick David Craig, Stefan P. Jaskiel, „Systematic Software Testing”, Artech House, 2002,

ISBN 1-580-53508-9
● [Forgács19] István Forgács, Attila Kovács, “Practical Test Design”, BCS, 2019, ISBN 978-1-780-

1747-23

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 61 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

● [Gilb93] Tom Gilb, Dorothy Graham, „Software Inspection”, Addison-Wesley, 1993,
ISBN 0-201-63181-4

● [Koomen06] Tim Koomen, Leo van der Aalst, Bart Broekman, Michiel Vroon „TMap NEXT, for result
driven testing”, UTN Publishers, 2006, ISBN 90-72194-80-2

● [Kuhn16] Richard Kuhn et al, „Introduction to Combinatorial Testing”, CRC Press, 2016,
ISBN 978-0-429-18515-1

● [Mosley93] Daniel J. Mosley, The Handbook of MIS Application Software Testing, Yourdon
Press, Prentice-Hall. 1993, ISBN 978-0-13-907007-5

● [Myers11] Glenford J. Myers, „The Art of Software Testing" 3rd Edition, John Wiley & Sons, 2011,
ISBN: 978-1-118-03196-4

● [Offutt16] Jeff Offutt, Paul Ammann, „Introduction to Software Testing" 2nd Edition, Cambridge
University Press, 2016, ISBN 13:978-1-107-17201-2,

● [Roman18] Adam Roman, „Testowanie i jakość oprogramowania. Modele, techniki, narzędzia”,
PWN, 2018, ISBN 978-83-01-19644-8

● [vanVeenendaal12] Erik van Veenendaal, „Practical risk-based testing. Product Risk Management:
The PRISMA Method”, UTN Publishers, 2012, ISBN 978-94-9098-607-0

● [Wiegers03] Karl Wiegers, „Software Requirements”, Microsoft Press, 2003, ISBN 0-735-61879-8
● [Whittaker03] James Whittaker, „How to Break Software”, Addison-Wesley, 2003, ISBN 0-201-

79619-8
● [Whittaker09] James Whittaker, „Exploratory software testing: tips, tricks, tours, and techniques to

guide test design”, Addison-Wesley, 2009, ISBN 0-321-63641-4

7.4. Inne dokumenty pomocnicze

Następujące odwołania wskazują informacje dostępne w Internecie i w innych źródłach. Odwołania zostały
sprawdzone w momencie publikacji niniejszego sylabusa poziomu zaawansowanego, ISTQB® nie ponosi
jednak odpowiedzialności za ich ewentualną późniejszą niedostępność.

● (Rozdział 3.)
– Czerwonka, Jacek: www.pairwise.org
– Przykładowa taksonomia defektów oparta na pracach Borisa Beizera:

inet.uni2.dk/~vinter/bugtaxst.doc
– Dobry przegląd różnych taksonomii: testingeducation.org/a/bugtax.pdf
– Bach, James: Heuristic Risk-Based Testing
– Exploring Exploratory Testing, Cem Kaner i Andy Tinkham,

www.kaner.com/pdfs/ExploringExploratoryTesting.pdf
– Pettichord, Bret, „An Exploratory Testing Workshop Report”,

www.testingcraft.com/exploratorypettichord
● (Rozdział 5.)

– http://www.tmap.net/checklists-and-templates

http://www.testingcraft.com/exploratorypettichord

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 62 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

8. Załącznik A

Poniższa tabela została opracowana na podstawie pełnej tabeli zawartej w standardzie ISO 25010. W tabeli
skupiono się jedynie na charakterystykach jakościowych omówionych w sylabusie dla analityka testów.
Zestawiono w niej terminy pochodzące ze standardu ISO 9126 (używane w wersji 2012 sylabusa) z
terminami pochodzącymi z nowszego standardu ISO 25010 (używanymi w niniejszej wersji sylabusa).

ISO/IEC 25010 ISO/IEC 9126-1 Uwagi

Funkcjonalność
(przydatność funkcjonalna) Funkcjonalność

Kompletność funkcjonalna

Poprawność funkcjonalna Dokładność

Adekwatność funkcjonalna Dopasowanie

 Współdziałanie
Charakterystyka przeniesiona do
kompatybilności

Użyteczność

Stosowność Zrozumiałość Nowa nazwa

Łatwość nauki Łatwość nauki

Łatwość obsługi Łatwość obsługi

Ochrona przed błędami użytkownika Nowa charakterystyka podrzędna

Estetyka interfejsu użytkownika Atrakcyjność Nowa nazwa

Dostępność Nowa charakterystyka podrzędna

Kompatybilność Nowa definicja

Współdziałanie

Współistnienie

Charakterystyka omawiana
w sylabusie dla technicznego
analityka testów

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 63 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

9. Indeks

0-przełączenie, 33, 34
adekwatność funkcjonalna, 44, 45, 62
analiza ryzyka, 20
analiza testów, 14, 15, 16, 19, 20
analiza wartości brzegowych, 29, 30, 33, 48
anonimizacja, 58
ataki usterek, 22
atrakcyjność, 62
autentykacja, 45
bezpieczeństwo, 24, 25
charakterystyki jakościowe, 19, 28, 45, 46, 53,

62
testowanie, 46

cykl wytwarzania oprogramowania, 14, 15, 19,
24, 45, 46, 47, 50

czarnoskrzynkowa technika testowania, 28, 35,
40, 42, 43

dane testowe, 17, 21, 26, 28, 35, 57, 58, 59
diagram przepływu sterowania, 38
diagram stanów, 33, 34
dojrzałość, 45
dokładność, 30, 46, 62

testowania, 38, 57
dopasowanie, 62
dostępność, 45, 48, 49
doświadczenie użytkownika, 48
drzewo klasyfikacji, 35, 36, 37
estetyka interfejsu użytkownika, 45, 48, 62
funkcjonalność, 45, 62
harmonogram wykonywania testów, 20, 21, 22
heurystyka, 50
historyjka użytkownika, 16, 28, 40, 41, 46, 47,

53, 54, 55
przegląd, 54

implementacja testów, 14, 15, 20, 26, 32
instalowalność, 45, 50
integralność, 45
inwentarz analizy i pomiaru stron internetowych

(WAMMI), 50
inwentarz analizy i pomiaru użyteczności

(SUMI), 50
karta opisu testu, 22, 39, 41, 42
klasa równoważności, 30, 35, 36, 38
kompletność funkcjonalna, 45, 62
kryterium wyjścia, 15, 20, 21
lista kontrolna, 40, 49

dostosowanie, 55

łatwość nauki, 45, 48, 62
łatwość obsługi, 45, 48, 62
łatwość ponownego użycia, 45
łączenie list kontrolnych, 55
łączenie technik, 38
model cech, 36
modułowość, 45
modyfikowalność, 45
monitorowanie i nadzór nad testami, 14
narzędzia, 21, 34, 36, 37, 41, 42, 45, 49, 57

do projektowania testów, 58
do przygotowywania danych testowych, 58
do wykonywania testów automatycznych, 59
do zarządzania testami, 47

niezaprzeczalność, 45
niezawodność, 45
N-przełączenie, 33, 34
ocena heurystyczna, 50
ocena użyteczności, 48
ochrona przed błędami użytkownika, 45, 48, 62
odtwarzalność, 45
osiągalność, 45
pielęgnowalność, 45
plan testów, 16, 20, 25
planowanie testów, 14
podcharakterystyki jakościowe, 45
podlegający analizie, 45
podstawa testów, 16, 17, 18, 19, 20, 22, 42

funkcjonalności, 46
przegląd, 53
wydajnościowych, 37

podział na klasy równoważności, 28, 33, 48
pokrycie N-przełączeń, 34
pokrycie okrążenia, 34
poprawność funkcjonalna, 24, 45, 46, 62
poufność, 45
procedura testowa, 20, 22, 28, 40
projektowanie przypadków testowych, 19, 34
projektowanie testów, 14, 15, 16, 17, 28, 57, 58
przegląd, 53
przegląd historyjek użytkownika, 54
przegląd oparty na liście kontrolnej, 53
przegląd wymagań, 53
przenaszalność, 24, 45, 46, 50
przepustowość, 45
przydatność funkcjonalna, 62
przypadek testowy, 17, 20, 30, 38, 40, 42

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 64 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

łagodzenie ryzyka, 25
niskiego poziomu, 18
podstawa, 16
priorytetyzacja, 20
projektowanie, 17, 19
wysokiego poziomu, 18
zmniejszanie liczby, 28, 32

przypadek użycia, 53
rozliczalność, 45
ryzyko, 24

analiza, 39
identyfikacja, 24
łagodzenie, 25, 58
ocena, 25, 26
podejście w głąb, 26
podejście wszerz, 26
poziom, 25, 26, 53
prawdopodobieństwo, 25
produktowe, 16
projektowe, 19
wpływ, 25

skrypt testowy, 17, 20, 57
słowa akcji, Patrz słowa kluczowe
słowa kluczowe, 21, 57, 58
standard

DO-178C, 21
ED 12C, 21
ISO 25010, 19, 45, 48, 50
ISO 29119-4, 28
ISO 9126, 62
OMG DMN, 31
OMG UML, 37

startegia testów, 16
sterownik, 19
stosowność, 45, 62
strategia testów, 14, 25, 45

oparta na ryzyku, 21, 24
reaktywna, 21

śledzenie, 17, 18, 19, 47, 53
środowisko docelowe, 47, 50
środowisko testowe, 14, 20, 21

lokalne, 19
projektowanie, 17

tablica decyzyjna, 31, 38, 48
definiowanie, 32
minimalizowanie, 32
z ograniczonym zakresem wejść, 31
z rozszerzonym zakresem wejść, 31

tablica stanów, 33, 34
taksonomia defektów, 40, 42, 61
technika testowania, 27
techniki kombinatoryczne, 29
testowalność, 45
testowanie adekwatności funkcjonalnej, 46

testowanie eksploracyjne, 22, 41, 42
testowanie kompletności funkcjonalnej, 47
testowanie oparte na defektach, 42
testowanie oparte na doświadczeniu, 38, 43
testowanie oparte na przypadkach użycia, 37,

48
testowanie oparte na ryzyku, 24, 26
testowanie oparte na słowach kluczowych, 57
testowanie poprawności funkcjonalnej, 46
testowanie przejść pomiędzy stanami, 33, 48
testowanie przenaszalności, 50
testowanie sposobem par, 29, 35, 36, 48, 50
testowanie użyteczności, 45
testowanie w cyklu wytwarzania

oprogramowania, 14
testowanie w oparciu o listę kontrolną, 40
testowanie w oparciu o tablicę decyzyjną, 31
testowanie współdziałania, 47
testowanie zastępowalności, 51
testowanie zdolności adaptacyjnej, 50
testy swobodne, 21
tolerowanie usterek, 45
ukończenie testów, 14
ułatwienia dostępu, 62
UX (User Experience), 48
użyteczność, 24, 45, 48, 62

ankiety i kwestionariusze, 50
ocena, 48
przeglądy, 49
testowanie, 49

warunek dozoru, 33, 34
warunek testowy, 16, 17, 18, 19, 20, 21, 28, 32,

42
warunek wstępny, 19, 20, 35
współdziałanie, 45, 62
współistnienie, 45, 62
wybór najlepszej techniki, 38
wydajność, 45
wykonanie testów, 15
wykonywanie testów, 14, 22
wymagania, 16, 19, 25, 28, 32, 46, 47

brakujące, 20
przegląd, 53
testowalne, 53

wymaganie, 53
wyrocznia testowa, 19, 46
zabezpieczenia, 42, 45, 58
zachowanie w czasie, 45
zastępowalność, 45, 50, 51
zaślepka, 19
zdolność adaptacyjna, 45, 50
zestaw testowy, 20, 28, 38, 43
zgadywanie błędów, 22, 39
zgodność, 45, 62

Analityk testów

Sylabus poziomu zaawansowanego

International

Software Testing

Qualifications Board

Wersja 3.1.2.5. Strona 65 z 65 08.07.2024 r.

© International Software Testing Qualifications Board Stowarzyszenie Jakości Systemów Informatycznych

zrozumiałość, 62
zużycie zasobów, 45

zwinne wytwarzanie oprogramowania, 15, 16,
19, 24, 25, 41, 46, 54

