

Certyfikowany tester

Sylabus poziomu podstawowego

wersja 4.0.1
(wersja PL 4.0.0.1)

International Software Testing Qualifications Board

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 2 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Informacja o prawach autorskich

Copyright © International Software Testing Qualifications Board (zwana dalej „ISTQB®”).

ISTQB® jest zastrzeżonym znakiem towarowym International Software Testing Qualifications Board.

Copyright © 2024 autorzy sylabusa poziomu podstawowego w wersji 4.0.1: Renzo Cerquozzi, Wim Decoutere, Jean-
François Riverin, Arnika Hryszko, Martin Klonk, Meile Posthuma, Eric Riou du Cosquer (przewodniczący), Adam
Roman, Lucjan Stapp, Stephanie Ulrich (wiceprzewodnicząca), Eshraka Zakaria.

Copyright © 2023 autorzy sylabusa poziomu podstawowego w wersji 4.0: Renzo Cerquozzi, Wim Decoutere, Klaudia
Dussa-Zieger, Jean-François Riverin, Arnika Hryszko, Martin Klonk, Michaël Pilaeten, Meile Posthuma, Stuart Reid,
Eric Riou du Cosquer (przewodniczący), Adam Roman, Lucjan Stapp, Stephanie Ulrich (wiceprzewodnicząca),
Eshraka Zakaria.

Prawa autorskie wersji polskiej zastrzeżone dla © Stowarzyszenie Jakości Systemów Informatycznych (SJSI).

Tłumaczenie z języka angielskiego wersji beta – KONTEKST A. Wolski spółka komandytowa.

Przegląd końcowy przeprowadził zespół w składzie: Adam Roman, Monika Petri-Starego, Lucjan Stapp (kierownik

zespołu).

Copyright © 2019 autorzy aktualizacji z 2019 roku: Klaus Olsen (przewodniczący), Meile Posthuma i Stephanie Ulrich.

Copyright © 2018 autorzy aktualizacji z 2018 roku: Klaus Olsen (przewodniczący), Tauhida Parveen
(wiceprzewodnicząca), Rex Black (kierownik projektu), Debra Friedenberg, Matthias Hamburg, Judy McKay, Meile
Posthuma, Hans Schaefer, Radosław Smilgin, Mike Smith, Steve Toms, Stephanie Ulrich, Marie Walsh i Eshraka
Zakaria.

Copyright © 2011 autorzy aktualizacji z 2011 roku: Thomas Müller (przewodniczący), Debra Friedenberg i grupa
robocza ds. poziomu podstawowego (Foundation Level Working Group) ISTQB®.

Copyright © 2010 autorzy aktualizacji z 2010 roku: Thomas Müller (przewodniczący), Armin Beer, Martin Klonk i Rahul
Verma.

Copyright © 2007 autorzy aktualizacji z 2007 roku: Thomas Müller (przewodniczący), Dorothy Graham, Debra
Friedenberg i Erik van Veenendaal.

Copyright © 2005 autorzy: Thomas Müller (przewodniczący), Rex Black, Sigrid Eldh, Dorothy Graham, Klaus Olsen,
Maaret Pyhäjärvi, Geoff Thompson i Erik van Veenendaal.

Wszelkie prawa zastrzeżone. Autorzy niniejszym przenoszą prawa autorskie na ISTQB®. Autorzy (jako obecni

posiadacze praw autorskich) oraz ISTQB® (jako przyszły posiadacz praw autorskich) wyrazili zgodę na następujące

warunki użytkowania:

● Kopiowanie fragmentów niniejszego dokumentu w celach niekomercyjnych jest dozwolone pod warunkiem
wskazania źródła. Akredytowani dostawcy szkoleń mogą opracowywać na podstawie niniejszego sylabusa własne
szkolenia pod warunkiem wskazania autorów i ISTQB® jako źródła sylabusa i właścicieli praw autorskich do niego.
Zastrzega się jednak, że umieszczenie odwołań do niniejszego sylabusa w ewentualnych materiałach
reklamowych dotyczących szkolenia jest dozwolone dopiero po uzyskaniu oficjalnej akredytacji materiałów
szkoleniowych ze strony uznawanej przez ISTQB® Rady Krajowej.

● Osoby fizyczne i grupy osób fizycznych mogą opracowywać na podstawie niniejszego sylabusa artykuły i książki
pod warunkiem wskazania autorów i ISTQB® jako źródła sylabusa i właścicieli praw autorskich do niego.

● Korzystanie z sylabusa do innych celów bez wcześniejszej pisemnej zgody ISTQB® jest zabronione.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 3 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● Każda uznawana przez ISTQB® Rada Krajowa może dokonywać przekładu niniejszego sylabusa pod warunkiem
powielenia powyższych uwag dotyczących praw autorskich w przetłumaczonej wersji dokumentu.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 4 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Historia zmian

Wersja Data Uwagi

CTFL v4.0.1 15.09.2024 CTFL v4.0.1 – errata

CTFL v4.0 21.04.2023 r. CTFL v4.0 — wersja do publikacji

CTFL v3.1.1 01.07.2021 r. CTFL v3.1.1 — aktualizacja informacji o prawach autorskich i logo

CTFL v3.1 11.11.2019 r. CTFL v3.1 — wydanie pielęgnacyjne z niewielkimi aktualizacjami

ISTQB 2018 27.04.2018 r. CTFL v3.0 — potencjalna wersja do publikacji

ISTQB 2011 01.04.2011 r. Wydanie pielęgnacyjne sylabusa CTFL

ISTQB 2010 30.03.2010 r. Wydanie pielęgnacyjne sylabusa CTFL

ISTQB 2007 01.05.2007 r. Wydanie pielęgnacyjne sylabusa CTFL

ISTQB 2005 01.07.2005 r. Certyfikowany tester — sylabus poziomu podstawowego, wersja 1.0

ASQF v2.2 lipiec 2003 r. Sylabus ASQF — poziom podstawowy, wersja 2.2: „Lehrplan
Grundlagen des Software-testens”

ISEB v2.0 25.02.1999 r. ISEB — testowanie oprogramowania — sylabus poziomu
podstawowego, wersja 2.0

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 5 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Historia zmian dla polskiej wersji sylabusa

Wersja Data Uwagi

4.0.1 07.05.2025 Poprawki w treści sylabusa

4.0.0.1 26.07.2023 Usunięto „na temat” (postępu testów) w FL-BO14 (podrozdział 0.4),
zmiana tłumaczenia z „odsyłacze” na „odwołania”, podrozdział 0.9
dodano „wytwarzania” (oprogramowania). Ujednolicono
tłumaczenie LO z rozdziału 9 Załącznik B z LO w poszczególnych
rozdziałach (LO 1.5.1, 1.5.2, 1.5.3, 2.1.2, 2.1.6, 2.3.1, 4.5.3).
W 3.2.3. dla roli „Protokolant” uzupełniono tłumaczenie o fragment
„takie jak decyzje i nowe anomalie znalezione podczas spotkania
przeglądowego”.

4.0.0.0 07.07.2023 Publikacja polskiego tłumaczenia sylabusa

0.3 01.06.2023 Przegląd i wprowadzanie zmian – Zespół SJSI

0.2 21.05.2023 Przegląd tłumaczenia – Zespół SJSI

 12.05.2023 Udostępnienie przez ISTQB® wersji końcowej

0.1 28.04.2023 Tłumaczenie wersji beta: KONTEKST A. Wolski sp. komandytowa

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 6 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Spis treści

Informacja o prawach autorskich ... 2

Historia zmian .. 4

Historia zmian dla polskiej wersji sylabusa .. 5

Podziękowania ... 10

0. Wstęp .. 12

0.1. Cel niniejszego sylabusa ... 12

0.2. Certyfikowany tester — poziom podstawowy w testowaniu oprogramowania 12

0.3. Ścieżki kariery dla testerów ... 12

0.4. Cele biznesowe ... 13

0.5. Cele nauczania objęte egzaminem i poziomy wiedzy ... 13

0.6. Egzamin certyfikacyjny na poziomie podstawowym .. 14

0.7. Akredytacja .. 14

0.8. Odniesienia do norm i standardów .. 14

0.9. Ciągła aktualizacja ... 14

0.10. Poziom szczegółowości ... 15

0.11. Struktura sylabusa ... 15

1. Podstawy testowania — 180 minut ... 17

1.1. Co to jest testowanie? ... 18

1.1.1. Cele testów .. 18

1.1.2. Testowanie a debugowanie ... 19

1.2. Dlaczego testowanie jest niezbędne? ... 19

1.2.1. Znaczenie testowania dla powodzenia projektu .. 20

1.2.2. Testowanie a zapewnienie jakości .. 20

1.2.3. Pomyłki, defekty, awarie i podstawowe przyczyny.. 20

1.3. Zasady testowania ... 21

1.4. Czynności testowe, testalia i role związane z testami ... 22

1.4.1. Czynności i zadania testowe ... 22

1.4.2. Proces testowy w kontekście .. 23

1.4.3. Testalia .. 24

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 7 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

1.4.4. Śledzenie powiązań między podstawą testów a testaliami ... 25

1.4.5. Role w procesie testowania ... 25

1.5. Niezbędne umiejętności i dobre praktyki w dziedzinie testowania .. 26

1.5.1. Ogólne umiejętności wymagane w związku z testowaniem .. 26

1.5.2. Podejście „cały zespół” .. 26

1.5.3. Niezależność testowania ... 27

2. Testowanie w cyklu wytwarzania oprogramowania — 130 minut ... 28

2.1. Testowanie w kontekście modelu cyklu wytwarzania oprogramowania 29

2.1.1. Wpływ cyklu wytwarzania oprogramowania na testowanie .. 29

2.1.2. Model cyklu wytwarzania oprogramowania a dobre praktyki testowania.............................. 30

2.1.3. Testowanie jako czynnik określający sposób wytwarzania oprogramowania 30

2.1.4. Metodyka DevOps a testowanie.. 31

2.1.5. Przesunięcie w lewo (ang. shift left approach) .. 32

2.1.6. Retrospektywy i doskonalenie procesów .. 32

2.2. Poziomy testów i typy testów ... 33

2.2.1. Poziomy testów ... 33

2.2.2. Typy testów ... 34

2.2.3. Testowanie potwierdzające i testowanie regresji .. 35

2.3. Testowanie pielęgnacyjne ... 36

3. Testowanie statyczne — 80 minut .. 38

3.1. Podstawy testowania statycznego ... 39

3.1.1. Produkty pracy badane metodą testowania statycznego .. 39

3.1.2. Korzyści wynikające z testowania statycznego ... 39

3.1.3. Różnice między testowaniem statycznym a dynamicznym .. 40

3.2. Informacje zwrotne i proces przeglądu .. 41

3.2.1. Korzyści wynikające z wczesnego i częstego otrzymywania informacji zwrotnych od
interesariuszy ... 41

3.2.2. Czynności wykonywane w procesie przeglądu ... 41

3.2.3. Role i obowiązki w przeglądach .. 42

3.2.4. Typy przeglądów ... 43

3.2.5. Czynniki powodzenia związane z przeglądami ... 43

4. Analiza i projektowanie testów — 390 minut ... 45

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 8 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

4.1. Ogólna charakterystyka technik testowania .. 46

4.2. Czarnoskrzynkowe techniki testowania ... 46

4.2.1. Podział na klasy równoważności ... 46

4.2.2. Analiza wartości brzegowych .. 47

4.2.3. Testowanie w oparciu o tablicę decyzyjną .. 48

4.2.4. Testowanie przejść pomiędzy stanami ... 49

4.3. Białoskrzynkowe techniki testowania .. 50

4.3.1. Testowanie instrukcji i pokrycie instrukcji kodu ... 50

4.3.2. Testowanie gałęzi i pokrycie gałęzi ... 51

4.3.3. Korzyści wynikające z testowania białoskrzynkowego.. 51

4.4. Techniki testowania oparte na doświadczeniu .. 52

4.4.1. Zgadywanie błędów ... 52

4.4.2. Testowanie eksploracyjne ... 52

4.4.3. Testowanie w oparciu o listę kontrolną ... 53

4.5. Podejścia do testowania oparte na współpracy... 53

4.5.1. Wspólne pisanie historyjek użytkownika ... 54

4.5.2. Kryteria akceptacji ... 54

4.5.3. Wytwarzanie sterowane testami akceptacyjnymi (ATDD) .. 55

5. Zarządzanie czynnościami testowymi — 335 minut ... 56

5.1. Planowanie testów ... 57

5.1.1. Cel i treść planu testów ... 57

5.1.2. Wkład testera w planowanie iteracji i wydań ... 57

5.1.3. Kryteria wejścia i kryteria wyjścia .. 58

5.1.4. Techniki szacowania ... 58

5.1.5. Ustalanie priorytetów przypadków testowych ... 59

5.1.6. Piramida testów ... 60

5.1.7. Kwadranty testowe .. 60

5.2. Zarządzanie ryzykiem .. 61

5.2.1. Definicja i atrybuty ryzyka .. 61

5.2.2. Ryzyka projektowe i produktowe ... 62

5.2.3. Analiza ryzyka produktowego .. 62

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 9 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

5.2.4. Kontrola ryzyka produktowego .. 63

5.3. Monitorowanie testów, nadzór nad testami i ukończenie testów ... 64

5.3.1. Metryki stosowane w testowaniu ... 64

5.3.2. Cel, treść i odbiorcy raportów z testów ... 65

5.3.3. Przekazywanie informacji o statusie testowania ... 66

5.4. Zarządzanie konfiguracją ... 66

5.5. Zarządzanie defektami .. 67

6. Narzędzia testowe — 20 minut ... 69

6.1. Narzędzia wspomagające testowanie ... 70

6.2. Korzyści i ryzyka związane z automatyzacją testów ... 70

7. Bibliografia ... 72

8. Załącznik A. Cele nauczania i poziomy poznawcze .. 75

9. Załącznik B. Macierz powiązań między celami biznesowymi a celami nauczania 76

10. Załącznik C. Opis wydania .. 83

11. Indeks .. 88

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 10 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Podziękowania

Niniejszy dokument został formalnie wydany przez właściciela produktu / przewodniczącego grupy roboczej
Erica Riou du Cosquer w dniu 15 września 2024 r.

Dokument został opracowany przez zespół złożony z przedstawicieli połączonych grup roboczych ISTQB®
ds. poziomu podstawowego i testowania zwinnego w składzie: Renzo Cerquozzi (wiceprzewodniczący),
Wim Decoutere, Jean-François Riverin, Arnika Hryszko, Martin Klonk, Meile Posthuma, Eric Riou du
Cosquer (przewodniczący), Adam Roman, Lucjan Stapp, Stephanie Ulrich (wiceprzewodniczący), Eshraka
Zakaria

Wersja 4.0 niniejszego dokumentu została formalnie wydana przez Zgromadzenie Ogólne ISTQB® w dniu
21 kwietnia 2023.

Dokument został opracowany przez zespół złożony z przedstawicieli połączonych grup roboczych ISTQB®
ds. poziomu podstawowego i testowania zwinnego w składzie: Laura Albert, Renzo Cerquozzi
(wiceprzewodniczący), Wim Decoutere, Klaudia Dussa-Zieger, Chintaka Indikadahena, Arnika Hryszko,
Martin Klonk, Kenji Onishi, Michaël Pilaeten (współprzewodniczący), Meile Posthuma, Gandhinee
Rajkomar, Stuart Reid, Eric Riou du Cosquer (współprzewodniczący), Jean-François Riverin, Adam
Roman, Lucjan Stapp, Stephanie Ulrich (wiceprzewodnicząca) i Eshraka Zakaria.

Członkowie zespołu pragną podziękować Stuartowi Reidowi, Patricii McQuaid i Leanne Howard za
redakcję techniczną oraz zespołowi recenzentów i Radom Krajowym za sugestie i wskazówki.

W procesie przeglądu, zgłaszania uwag i głosowania nad niniejszym sylabusem uczestniczyły następujące
osoby: Adam Roman, Adam Ścierski, Ágota Horváth, Ainsley Rood, Ale Rebon Portillo, Alessandro Collino,
Alexander Alexandrov, Amanda Logue, Ana Ochoa, André Baumann, André Verschelling, Andreas
Spillner, Anna Miazek, Armin Born, Arnd Pehl, Arne Becher, Attila Gyúri, Attila Kovács, Beata Karpińska,
Benjamin Timmermans, Blair Mo, Carsten Weise, Chinthaka Indikadahena, Chris Van Bael, Ciaran
O’Leary, Claude Zhang, Cristina Sobrero, Dandan Zheng, Dani Almog, Daniel Säther, Daniel van der Zwan,
Danilo Magli, Darvay Tamás Béla, Dawn Haynes, Dena Pauletti, Dénes Medzihradszky, Doris Dötzer, Dot
Graham, Edward Weller, Erhardt Wunderlich, Eric Riou Du Cosquer, Florian Fieber, Fran O’Hara, François
Vaillancourt, Frans Dijkman, Gabriele Haller, Gary Mogyorodi, Georg Sehl, Géza Bujdosó, Giancarlo
Tomasig, Giorgio Pisani, Gustavo Márquez Sosa, Helmut Pichler, Hongbao Zhai, Horst Pohlmann, Ignacio
Trejos, Ilia Kulakov, Ine Lutterman, Ingvar Nordström, Iosif Itkin, Jamie Mitchell, Jan Giesen, Jean-Francois
Riverin, Joanna Kazun, Joanne Tremblay, Joëlle Genois, Johan Klintin, John Kurowski, Jörn Münzel, Judy
McKay, Jürgen Beniermann, Karol Frühauf, Katalin Balla, Kevin Kooh, Klaudia Dussa-Zieger, Klaus
Erlenbach, Klaus Olsen, Krisztián Miskó, Laura Albert, Liang Ren, Lijuan Wang, Lloyd Roden, Lucjan
Stapp, Mahmoud Khalaili, Marek Majernik, Maria Clara Choucair, Mark Rutz, Markus Niehammer, Martin
Klonk, Márton Siska, Matthew Gregg, Matthias Hamburg, Mattijs Kemmink, Maud Schlich, May Abu-Sbeit,
Meile Posthuma, Mette Bruhn-Pedersen, Michal Tal, Michel Boies, Mike Smith, Miroslav Renda, Mohsen
Ekssir, Monika Stocklein Olsen, Murian Song, Nicola De Rosa, Nikita Kalyani, Nishan Portoyan, Nitzan
Goldenberg, Ole Chr. Hansen, Patricia McQuaid, Patricia Osorio, Paul Weymouth, Paweł Kwasik, Peter
Zimmerer, Petr Neugebauer, Piet de Roo, Radosław Smilgin, Ralf Bongard, Ralf Reissing, Randall Rice,
Rik Marselis, Rogier Ammerlaan, Sabine Gschwandtner, Sabine Uhde, Salinda Wickramasinghe, Salvatore
Reale, Sammy Kolluru, Samuel Ouko, Stephanie Ulrich, Stuart Reid, Surabhi Bellani, Szilard Szell, Tamás
Gergely, Tamás Horváth, Tatiana Sergeeva, Tauhida Parveen, Thaer Mustafa, Thomas Eisbrenner,
Thomas Harms, Thomas Heller, Tobias Letzkus, Tomas Rosenqvist, Werner Lieblang, Yaron Tsubery,
Zhenlei Zuo i Zsolt Hargitai.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 11 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Grupa robocza ds. poziomu podstawowego ISTQB® (wydanie 2018): Klaus Olsen (przewodniczący),
Tauhida Parveen (wiceprzewodnicząca), Rex Black (kierownik projektu), Eshraka Zakaria, Debra
Friedenberg, Ebbe Munk, Hans Schaefer, Judy McKay, Marie Walsh, Meile Posthuma, Mike Smith,
Radosław Smilgin, Stephanie Ulrich, Steve Toms, Corne Kruger, Dani Almog, Eric Riou du Cosquer, Igal
Levi, Johan Klintin, Kenji Onishi, Rashed Karim, Stevan Zivanovic, Sunny Kwon, Thomas Müller, Vipul
Kocher i Yaron Tsubery. Członkowie zespołu składają podziękowania powyższym osobom oraz wszystkim
Radom Krajowym za sugestie.

Grupa robocza ds. poziomu podstawowego ISTQB® (wydanie 2011): Thomas Müller (przewodniczący),
Debra Friedenberg. Członkowie zespołu podstawowego składają podziękowania zespołowi recenzentów
(w składzie: Dan Almog, Armin Beer, Rex Black, Julie Gardiner, Judy McKay, Tuula Pääkkönen, Eric Riou
du Cosquier, Hans Schaefer, Stephanie Ulrich i Erik van Veenendaal) oraz wszystkim Radom Krajowym
za sugestie dotyczące bieżącej wersji sylabusa.

Grupa robocza ds. poziomu podstawowego ISTQB® (wydanie 2010): Thomas Müller (przewodniczący),
Rahul Verma, Martin Klonk i Armin Beer. Członkowie zespołu podstawowego składają podziękowania
zespołowi recenzentów (w składzie: Rex Black, Mette Bruhn-Pederson, Debra Friedenberg, Klaus Olsen,
Judy McKay, Tuula Pääkkönen, Meile Posthuma, Hans Schaefer, Stephanie Ulrich, Pete Williams i Erik
van Veenendaal) oraz wszystkim Radom Krajowym za sugestie.

Grupa robocza ds. poziomu podstawowego ISTQB® (wydanie 2007): Thomas Müller (przewodniczący),
Dorothy Graham, Debra Friedenberg i Erik van Veenendaal. Członkowie zespołu podstawowego składają
podziękowania zespołowi recenzentów (w składzie: Hans Schaefer, Stephanie Ulrich, Meile Posthuma,
Anders Pettersson i Wonil Kwon) oraz wszystkim Radom Krajowym za sugestie.

Grupa robocza ds. poziomu podstawowego ISTQB® (wydanie 2005): Thomas Müller (przewodniczący),
Rex Black, Sigrid Eldh, Dorothy Graham, Klaus Olsen, Maaret Pyhäjärvi, Geoff Thompson i Erik van
Veenendaal. Członkowie zespołu podstawowego składają podziękowania zespołowi recenzentów oraz
wszystkim Radom Krajowym za sugestie.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 12 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

0. Wstęp

0.1. Cel niniejszego sylabusa

Niniejszy sylabus stanowi podstawę egzaminu International Software Testing Qualification Board na

poziomie podstawowym. ISTQB® udostępnia sylabus:

1. Radom Krajowym w celu przetłumaczenia na języki lokalne i dokonania akredytacji dostawców

szkoleń. Rady Krajowe mogą dostosowywać sylabus do potrzeb danego języka oraz modyfikować

odwołania do literatury w celu uwzględnienia publikacji lokalnych;

2. organom certyfikującym w celu sformułowania pytań egzaminacyjnych w językach lokalnych

dostosowanych do celów nauczania niniejszego sylabusa;

3. dostawcom szkoleń w celu opracowania materiałów dydaktycznych i określenia odpowiednich

metod nauczania;

4. kandydatom ubiegającym się o certyfikat w celu przygotowania się do egzaminu certyfikacyjnego

(w ramach szkoleń lub samodzielnie);

5. międzynarodowej społeczności specjalistów w dziedzinie inżynierii oprogramowania i systemów

w celu rozwijania zawodu testera oprogramowania i systemów oraz opracowywania książek

i artykułów.

0.2. Certyfikowany tester — poziom podstawowy w testowaniu
oprogramowania

Kwalifikacja na poziomie podstawowym jest przeznaczona dla wszystkich osób zaangażowanych

w testowanie oprogramowania. Mogą to być między innymi: testerzy, analitycy testów, inżynierowie testów,

konsultanci ds. testów, kierownicy testów, programiści oraz członkowie zespołów projektowych. Ponadto

kwalifikacja na poziomie podstawowym jest odpowiednia dla osób chcących zdobyć podstawową wiedzę

w dziedzinie testowania oprogramowania, takich jak: kierownicy projektów, kierownicy ds. jakości,

właściciele produktu, kierownicy ds. wytwarzania oprogramowania, analitycy biznesowi, dyrektorzy ds. IT

oraz konsultanci w dziedzinie zarządzania. Posiadacze certyfikatu podstawowego mogą zdobywać wyższe

poziomy kwalifikacji w procesie certyfikacji w dziedzinie testowania oprogramowania.

0.3. Ścieżki kariery dla testerów

System stworzony przez ISTQB® umożliwia osobom zajmującym się testowaniem dostęp do szerokiej

i szczegółowej wiedzy przydatnej na każdym etapie kariery. Posiadacze certyfikatu ISTQB® na poziomie

podstawowym mogą być również zainteresowani certyfikatami w obszarze Core na poziomie

zaawansowanym (analityk testów, techniczny analityk testów, kierownik testów), a następnie na poziomie

eksperckim (zarządzanie testami, doskonalenie procesu testowego), natomiast osoby chcące rozwijać

swoje umiejętności w dziedzinie praktyk testowania w środowiskach zwinnych powinny wziąć pod uwagę

certyfikat technicznego testera zwinnego lub certyfikat ATLaS (Agile Test Leadership at Scale). Z kolei

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 13 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

ścieżka Specialist umożliwia ścisłą specjalizację w dziedzinach, w których stosowane są wyspecjalizowane

podejścia do testowania i czynności testowe (np. automatyzacja testów, testowanie z wykorzystaniem

sztucznej inteligencji, testowanie oparte na modelu, testowanie aplikacji mobilnych), które są związane

z konkretnymi obszarami testowania (np. testowanie wydajnościowe, testowanie użyteczności, testowanie

akceptacyjne, testowanie zabezpieczeń), bądź w których skupia się specjalistyczna wiedza w dziedzinie

testowania dotycząca określonych sektorów przemysłu (takich jak branża automotive czy gry). Najnowsze

informacje na temat systemu certyfikacji testerów ISTQB® można uzyskać w serwisie www.istqb.org.

0.4. Cele biznesowe

W tym podrozdziale wymieniono 14 celów biznesowych, które powinna realizować osoba otrzymująca

certyfikat na poziomie podstawowym.

Certyfikowany tester na poziomie podstawowym potrafi realizować następujące cele:

FL-BO1 Znajomość istoty testowania i wynikających z niego korzyści

FL-BO2 Znajomość podstawowych pojęć związanych z testowaniem oprogramowania

FL-BO3 Identyfikowanie podejścia do testowania i czynności testowych, które mają być

realizowane w zależności od kontekstu testowania

FL-BO4 Dokonywanie oceny i podnoszenie jakości dokumentacji

FL-BO5 Zwiększanie skuteczności i efektywności testowania

FL-BO6 Dopasowywanie procesu testowego do cyklu wytwarzania oprogramowania

FL-BO7 Znajomość zasad zarządzania testami

FL-BO8 Sporządzanie i udostępnianie przejrzystych, zrozumiałych raportów o defektach

FL-BO9 Znajomość czynników wpływających na priorytety i pracochłonność testowania

FL-BO10 Praca w zespole interdyscyplinarnym

FL-BO11 Znajomość ryzyk i korzyści związanych z automatyzacją testów

FL-BO12 Identyfikowanie niezbędnych umiejętności wymaganych w związku z testowaniem

FL-BO13 Znajomość wpływu ryzyka na testowanie

FL-BO14 Sprawne raportowanie postępu i jakości testów

0.5. Cele nauczania objęte egzaminem i poziomy wiedzy

Cele nauczania wspomagają osiąganie celów biznesowych i stanowią wytyczne do tworzenia egzaminów

Certyfikowany tester poziom podstawowy. Poziomy wiedzy dla poszczególnych celów nauczania

przedstawiono na początku każdego rozdziału.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 14 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Poziomy te sklasyfikowano następująco:

● K1 — zapamiętać;

● K2 — zrozumieć;

● K3 — zastosować.

Dalsze szczegóły i przykłady celów nauczania podano w Załączniku A. Definicje wszystkich pojęć

wymienionych jako słowa kluczowe pod tytułami rozdziałów należy zapamiętać (K1), nawet jeśli nie

wspomniano o tym wyraźnie w celach nauczania.

0.6. Egzamin certyfikacyjny na poziomie podstawowym

Egzamin umożliwiający uzyskanie certyfikatu na poziomie podstawowym jest oparty na niniejszym sylabusie.

Przy udzielaniu odpowiedzi na pytania egzaminacyjne może być konieczne skorzystanie z materiału

obejmującego więcej niż jeden rozdział tego sylabusa. Przedmiotem egzaminu może być treść wszystkich części

sylabusa z wyjątkiem wstępu i załączników. W dokumencie znajdują się również odwołania do norm/standardów

i książek (rozdział 7), ale ich treść nie może być przedmiotem egzaminu w zakresie wykraczającym poza

informacje streszczone w tym sylabusie. Więcej informacji na ten temat zawiera dokument dotyczący struktury

i zasad przeprowadzania egzaminów na poziomie podstawowym (Foundation Level Examination Structures and

Rules).

0.7. Akredytacja

Rada Krajowa ISTQB® może dokonywać akredytacji dostawców szkoleń, którzy oferują materiały

dydaktyczne zgodne z niniejszym sylabusem. Wytyczne dotyczące akredytacji należy uzyskać od Rady

Krajowej lub organu dokonującego akredytacji. Akredytowane szkolenie jest uznawane za zgodne

z niniejszym sylabusem i może obejmować egzamin ISTQB®. Wytyczne dotyczące akredytacji w zakresie

niniejszego sylabusa są zgodne z ogólnymi wytycznymi dotyczącymi akredytacji opublikowanymi przez

grupę roboczą ds. zarządzania procesami i zgodności.

0.8. Odniesienia do norm i standardów

Sylabus poziomu podstawowego zawiera odniesienia do norm i standardów (np. IEEE lub ISO). Celem tych

odniesień jest stworzenie ram pojęciowych (tak jak w przypadku odniesień do normy ISO 25010 w zakresie

charakterystyk jakościowych) lub odesłanie czytelnika do źródła, z którego może skorzystać w celu uzyskania

dodatkowych informacji. Należy jednak zaznaczyć, że treść norm i standardów nie jest przedmiotem egzaminu.

Więcej informacji na temat norm i standardów zawiera rozdział 7.

0.9. Ciągła aktualizacja

W branży wytwarzania oprogramowania zachodzą dynamiczne zmiany. Aby uwzględnić zmieniającą się sytuację

i zapewnić interesariuszom dostęp do przydatnych, aktualnych informacji, grupy robocze ISTQB® stworzyły listę

odwołań do dokumentów pomocniczych i zmian w normach/standardach, która jest dostępna w witrynie

www.istqb.org. Powyższe informacje nie są przedmiotem egzaminu dotyczącego sylabusa poziomu

podstawowego.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 15 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

0.10. Poziom szczegółowości

Poziom szczegółowości informacji zawartych w niniejszym sylabusie umożliwia tworzenie spójnych pod
względem treści nauczania szkoleń i przeprowadzanie egzaminów na skalę międzynarodową. Aby
sprostać temu zadaniu, w sylabusie uwzględniono:

● ogólne cele dydaktyczne opisujące założenia poziomu podstawowego;

● wykaz terminów (słów kluczowych), które muszą zapamiętać uczestnicy szkolenia;

● cele nauczania w poszczególnych obszarach wiedzy, opisujące efekty kształcenia o charakterze
poznawczym;

● opis najważniejszych pojęć, w tym odwołania do uznanych źródeł.

Treść sylabusa nie stanowi opisu całego obszaru wiedzy związanego z testowaniem oprogramowania.
Odzwierciedla ona jedynie poziom szczegółowości, jaki należy uwzględnić w akredytowanych szkoleniach
na poziomie podstawowym. W sylabusie skupiono się na pojęciach i technikach związanych
z testowaniem, które mogą mieć zastosowanie do wszystkich projektów wytwarzania oprogramowania —
bez względu na przyjęty cykl wytwarzania oprogramowania.

0.11. Struktura sylabusa

Dokument podzielono na sześć rozdziałów zawierających treści będące przedmiotem egzaminu. Nagłówek

najwyższego poziomu zawiera informację o czasie trwania szkolenia z zakresu danego rozdziału (nie

podano czasu trwania podrozdziałów i mniejszych jednostek redakcyjnych). W przypadku akredytowanych

szkoleń na przekazanie wiedzy zawartej w sylabusie potrzeba co najmniej 1135 min (18 godz. 55 min)

wykładu. Czas ten podzielono na poszczególne rozdziały w następujący sposób:

● Rozdział 1. Podstawy testowania — 180 minut

o Kandydat poznaje podstawowe zasady związane z testowaniem, powody, dla których

testowanie jest niezbędne, oraz cele testów.

o Kandydat poznaje proces testowy oraz najważniejsze czynności testowe i testalia.

o Kandydat dowiaduje się, jakie umiejętności są niezbędne w testowaniu.

● Rozdział 2. Testowanie w cyklu wytwarzania oprogramowania — 130 minut

o Kandydat dowiaduje się, w jaki sposób testowanie jest uwzględniane w różnych

podejściach do wytwarzania oprogramowania.

o Kandydat poznaje pojęcia związane z podejściem „najpierw test” i metodyką DevOps.

o Kandydat uzyskuje wiedzę na temat poszczególnych poziomów testów i typów testów oraz

testowania pielęgnacyjnego.

● Rozdział 3. Testowanie statyczne — 80 minut

o Kandydat poznaje podstawy testowania statycznego oraz proces uzyskiwania informacji

zwrotnych i przeprowadzania przeglądu.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 16 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● Rozdział 4. Analiza i projektowanie testów — 390 minut

o Kandydat dowiaduje się, jak należy stosować techniki czarnoskrzynkowe, białoskrzynkowe

i oparte na doświadczeniu, aby tworzyć przypadki testowe na podstawie różnych

produktów pracy związanych z oprogramowaniem.

o Kandydat poznaje podejście do testowania oparte na współpracy.

● Rozdział 5. Zarządzanie czynnościami testowymi — 335 minut

o Kandydat poznaje ogólne zasady planowania testów i szacowania ich pracochłonności.

o Kandydat dowiaduje się, jak ryzyka mogą wpływać na zakres testów.

o Kandydat dowiaduje się, jak należy monitorować i nadzorować czynności testowe.

o Kandydat dowiaduje się, w jaki sposób zarządzanie konfiguracją wspomaga testowanie.

o Kandydat uczy się zgłaszania defektów w przejrzysty i zrozumiały sposób.

● Rozdział 6. Narzędzia testowe — 20 minut

o Kandydat uczy się klasyfikować narzędzia oraz poznaje ryzyka i korzyści wynikające

z automatyzacji testów.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 17 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

1. Podstawy testowania — 180 minut

Słowa kluczowe

analiza testów, awaria, cel testów, dane testowe, debugowanie, defekt, implementacja testów, jakość,
monitorowanie testów, nadzór nad testami, planowanie testów, podstawa testów, podstawowa przyczyna,
pokrycie, pomyłka, procedura testowa, proces testowy, projektowanie testów, przedmiot testów, przypadek
testowy, śledzenie powiązań, testalia, testowanie, ukończenie testów, walidacja, warunek testowy,
weryfikacja, wykonywanie testów, wynik testu, zapewnienie jakości

Cele nauczania w rozdziale 1:

1.1 Co to jest testowanie?

FL-1.1.1 (K1) Kandydat wskazuje typowe cele testów.

FL-1.1.2 (K2) Kandydat odróżnia testowanie od debugowania.

1.2 Dlaczego testowanie jest niezbędne?

FL-1.2.1 (K2) Kandydat podaje przykłady wskazujące, dlaczego testowanie jest niezbędne.

FL-1.2.2 (K1) Kandydat pamięta, jaka jest relacja między testowaniem a zapewnieniem jakości.

FL-1.2.3 (K2) Kandydat odróżnia podstawową przyczynę, pomyłkę, defekt i awarię.

1.3 Zasady testowania

FL-1.3.1 (K2) Kandydat objaśnia siedem zasad testowania.

1.4 Czynności testowe, testalia i role związane z testami

FL-1.4.1 (K2) Kandydat wyjaśnia poszczególne czynności i powiązane zadania testowe.

FL-1.4.2 (K2) Kandydat wyjaśnia wpływ kontekstu na proces testowy.

FL-1.4.3 (K2) Kandydat rozróżnia testalia wspomagające czynności testowe.

FL-1.4.4 (K2) Kandydat wyjaśnia korzyści wynikające ze śledzenia powiązań.

FL-1.4.5 (K2) Kandydat porównuje poszczególne role występujące w testowaniu.

1.5 Niezbędne umiejętności i dobre praktyki w dziedzinie testowania

FL-1.5.1 (K2) Kandydat podaje przykłady ogólnych umiejętności wymaganych w testowaniu.

FL-1.5.2 (K1) Kandydat pamięta, jakie są zalety podejścia „cały zespół”.

FL-1.5.3 (K2) Kandydat omawia korzyści i wady niezależności testowania.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 18 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

1.1. Co to jest testowanie?

Systemy oprogramowania są nieodłączną częścią naszego codziennego życia. Jednocześnie większość
z nas miała zapewne do czynienia z oprogramowaniem, które nie zadziałało tak, jak powinno.
Nieprawidłowe funkcjonowanie oprogramowania może powodować wiele problemów, w tym straty
finansowe, stratę czasu, utratę reputacji firmy, a w skrajnych przypadkach nawet utratę zdrowia lub życia.
Odpowiedzią na ten problem jest właśnie testowanie oprogramowania, które pozwala ocenić jego jakość
i zmniejszyć ryzyko wystąpienia awarii podczas eksploatacji.

Testowanie oprogramowania to zbiór czynności mających na celu wykrycie defektów i dokonanie oceny
jakości produktów pracy związanych z oprogramowaniem. W trakcie testowania produkty pracy te są
nazywane przedmiotami testów. Powszechnie panuje błędne przekonanie, że testowanie polega wyłącznie
na wykonywaniu testów, czyli uruchamianiu oprogramowania i sprawdzaniu uzyskanych rezultatów.
W rzeczywistości jednak testowanie oprogramowania obejmuje również inne czynności i musi być
dopasowane do cyklu wytwarzania oprogramowania (patrz rozdział 2).

Inne nieporozumienie polega na postrzeganiu testowania jako czynności skupionej wyłącznie na
weryfikowaniu przedmiotu testów. Chociaż w ramach testowania rzeczywiście sprawdza się, czy system
spełnia wyspecyfikowane wymagania, to jednak przeprowadza się również walidację, której zadaniem jest
sprawdzenie, czy system odpowiada na potrzeby użytkowników i innych interesariuszy w swoim
środowisku produkcyjnym.

Testowanie może mieć charakter dynamiczny lub statyczny. Testowanie dynamiczne wiąże się
z uruchamianiem oprogramowania, natomiast testowanie statyczne polega na wykonywaniu przeglądów
(patrz rozdział 3) i przeprowadzaniu analizy statycznej. W testowaniu dynamicznym do wyprowadzania
przypadków testowych używa się różnych technik testowania i podejść do testowania (patrz rozdział 4).

Testowanie nie jest wyłącznie czynnością o charakterze technicznym, ponieważ wymaga również
właściwego planowania, zarządzania, szacowania, monitorowania i nadzoru (patrz rozdział 5).

Testerzy korzystają z narzędzi (patrz rozdział 6), ale należy pamiętać, że testowanie to w dużej mierze
praca umysłowa, której wykonywanie wymaga posiadania specjalistycznej wiedzy, korzystania
z umiejętności analitycznych oraz krytycznego i systemowego myślenia (Myers 2011, Roman 2018).

Więcej informacji na temat pojęć związanych z testowaniem oprogramowania zawiera standard
ISO/IEC/IEEE 29119-1.

1.1.1. Cele testów

Typowe cele testów to:

● dokonywanie oceny produktów pracy, takich jak wymagania, historyjki użytkownika, projekty, kod;

● powodowanie awarii i znajdowanie defektów;

● zapewnienie wymaganego pokrycia przedmiotu testów;

● obniżanie poziomu ryzyka związanego z niedostateczną jakością oprogramowania;

● sprawdzanie, czy zostały spełnione wyspecyfikowane wymagania;

● sprawdzanie, czy przedmiot testów spełnia wymagania umowne, prawne i regulacyjne;

● dostarczanie interesariuszom informacji niezbędnych do podejmowania świadomych decyzji;

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 19 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● budowanie zaufania do jakości przedmiotu testów;

● sprawdzanie, czy przedmiot testów jest kompletny i działa zgodnie z oczekiwaniami interesariuszy.

Cele testów mogą różnić się w zależności od kontekstu, w tym od testowanego produktu pracy, poziomu
testów, ryzyk, przyjętego cyklu wytwarzania oprogramowania oraz kwestii związanych z kontekstem
biznesowym, takich jak struktura przedsiębiorstwa, uwarunkowania konkurencyjne czy czas wprowadzania
produktu na rynek.

1.1.2. Testowanie a debugowanie

Testowanie i debugowanie to dwie różne czynności. Testowanie pozwala wywołać awarie, które są
skutkiem defektów w oprogramowaniu (testowanie dynamiczne), lub znaleźć defekty bezpośrednio
w przedmiocie testów (testowanie statyczne).

Gdy w ramach testowania dynamicznego (patrz rozdział 4) zostanie wywołana awaria, rozpoczyna się
debugowanie, którego celem jest znalezienie przyczyn danej awarii (defektów), a następnie ich
przeanalizowanie i wyeliminowanie. Typowy proces debugowania stosowany w takich przypadkach
obejmuje:

● odtworzenie awarii;

● przeprowadzenie diagnozy (tj. znalezienie defektu);

● usunięcie defektu.

Następnie wykonywane jest testowanie potwierdzające, które pozwala sprawdzić, czy wprowadzone
poprawki doprowadziły do rozwiązania problemu. W optymalnych warunkach testowanie potwierdzające
wykonuje osoba, która wcześniej przeprowadzała początkowy test. W dalszej kolejności można również
wykonać testowanie regresji, aby upewnić się, że wprowadzone poprawki nie powodują awarii w innych
obszarach przedmiotu testów (więcej informacji na temat testowania potwierdzającego i testowania regresji
zawiera sekcja 2.2.3).

W przypadku wykrycia defektu podczas testowania statycznego, debugowanie obejmuje usunięcie takiego
defektu. Nie ma przy tym potrzeby odtwarzania ani diagnozowania problemu, ponieważ testowanie
statyczne pozwala wykrywać defekty w sposób bezpośredni i nie może powodować awarii (patrz
rozdział 3).

1.2. Dlaczego testowanie jest niezbędne?

Testowanie — będące formą kontroli jakości — pomaga osiągnąć uzgodnione cele testów w wyznaczonym

zakresie i czasie, z zachowaniem ustalonego poziomu jakości oraz w granicach przyjętego budżetu. Wkład

testowania w powodzenie przedsięwzięcia nie powinien przy tym ograniczać się wyłącznie do działań

zespołu testowego. Każdy interesariusz może również wykorzystać swoje umiejętności w dziedzinie

testowania, aby przyczynić się do pomyślnej realizacji projektu. Przetestowanie modułów, systemów

i związanych z nimi produktów pracy (np. dokumentacji) pozwala zidentyfikować defekty

w oprogramowaniu.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 20 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

1.2.1. Znaczenie testowania dla powodzenia projektu

Testowanie pozwala w opłacalny sposób wykryć defekty, które można następnie usunąć poprzez

debugowanie (będące odrębną czynnością niewchodzącą w zakres testów). Tym samym testowanie

pośrednio przyczynia się do podniesienia jakości przedmiotów testów.

Testowanie umożliwia bezpośrednią ocenę jakości przedmiotu testów na różnych fazach cyklu wytwarzania

oprogramowania. Czynności związane z testowaniem są wykonywane w ramach szerszych działań

związanych z zarządzaniem projektem i pomagają w podejmowaniu decyzji o przejściu do kolejnej fazy

cyklu wytwarzania oprogramowania, na przykład o przekazaniu oprogramowania do eksploatacji.

Testowanie stwarza użytkownikom okazję do pośredniego wpływania na przebieg projektu wytwarzania

oprogramowania, ponieważ testerzy dbają o to, aby ich znajomość potrzeb użytkowników była

uwzględniana na wszystkich etapach cyklu wytwarzania. Alternatywą byłoby zaproszenie reprezentatywnej

grupy użytkowników do udziału w projekcie wytwarzania oprogramowania, co zwykle nie jest możliwe

z uwagi na duże koszty oraz brak dostępności odpowiednich osób.

Testowanie może być również niezbędne do spełnienia wymagań wynikających z umów, przepisów prawa

lub norm/standardów.

1.2.2. Testowanie a zapewnienie jakości

Testowanie jest często utożsamiane z zapewnieniem jakości, ale w rzeczywistości są to dwa oddzielne
procesy. Testowanie jest formą kontroli jakości.

Testowanie to podejście ukierunkowane na produkt i mające charakter korekcyjny, które skupia się na
wykonywaniu czynności umożliwiających osiągnięcie odpowiedniego poziomu jakości. Testowanie jest
ważną formą kontroli jakości — obok metod formalnych (takich jak weryfikacja modelowa czy kontrola
poprawności), symulacji i prototypowania.

Z kolei zapewnienie jakości to podejście ukierunkowane na procesy i mające charakter prewencyjny, które
skupia się na wdrażaniu i udoskonalaniu procesów. Bazuje ono na założeniu, że poprawne wykonanie
dobrze zaprojektowanego procesu przekłada się na wytworzenie dobrego produktu. Zasady zapewnienia
jakości mają zastosowanie zarówno do wytwarzania, jak i do testowania oprogramowania,
a odpowiedzialność za ich przestrzeganie ponoszą wszystkie osoby zaangażowane w projekt.

Wyniki testów są wykorzystywane w obu przypadkach: w kontekście kontroli jakości pomagają w usuwaniu
defektów, a w kontekście zapewnienia jakości dostarczają informacji zwrotnych na temat tego, na ile
prawidłowo przebiegają procesy wytwarzania i testowania oprogramowania.

1.2.3. Pomyłki, defekty, awarie i podstawowe przyczyny

Na skutek pomyłki (błędu) człowieka mogą powstać defekty (inaczej zwane usterkami lub pluskwami), które
w dalszej kolejności mogą prowadzić do wystąpienia awarii. Ludzie popełniają pomyłki z różnych przyczyn,
takich jak presja czasu, złożoność produktów pracy, procesów, infrastruktury lub interakcji bądź po prostu
zmęczenie lub brak należytego przeszkolenia.

Defekty mogą występować w dokumentacji (np. w specyfikacji wymagań lub w skrypcie testowym),
w kodzie źródłowym lub w produktach pracy pomocniczych (takich jak plik kompilacji). Niewykrycie
defektów w produktach pracy powstałych na wcześniejszych etapach cyklu wytwarzania oprogramowania

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 21 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

często prowadzi do powstania wadliwych produktów pracy na dalszych etapach tego cyklu. Wykonanie
kodu zawierającego defekt może doprowadzić do sytuacji, w której system nie wykona zamierzonej
operacji lub wykona operację niezamierzoną, czyli do awarii. Niektóre defekty zawsze powodują awarię
w przypadku wykonania wadliwego kodu, a inne — tylko w określonych okolicznościach. Może się również
zdarzyć, że dany defekt nigdy nie spowoduje awarii.

Pomyłki i defekty nie są jedynymi przyczynami awarii. Awarie mogą być również spowodowane warunkami
środowiskowymi, takimi jak promieniowanie lub pole elektromagnetyczne powodujące nieprawidłowe
działanie oprogramowania wbudowanego (ang. firmware).

Zasadniczy czynnik powodujący wystąpienie problemu (np. sytuacja prowadząca do pomyłki) jest
nazywany podstawową przyczyną. Podstawowe przyczyny ustala się w toku tzw. analizy przyczyny
podstawowej, którą przeprowadza się zwykle po wystąpieniu awarii lub zidentyfikowaniu defektu. Uważa
się, że podjęcie odpowiednich działań w stosunku do podstawowej przyczyny (na przykład jej usunięcie)
pozwala zapobiec powstaniu kolejnych podobnych awarii lub defektów, a przynajmniej zmniejszyć ich
częstotliwość.

1.3. Zasady testowania

Na przestrzeni lat zaproponowano cały szereg zasad testowania, które dostarczają ogólnych wskazówek
mających zastosowanie do wszystkich rodzajów testowania. W niniejszym sylabusie opisano siedem takich
zasad.

1. Testowanie ujawnia defekty, ale nie może dowieść ich braku. Testowanie może wykazać obecność
defektów w przedmiocie testów, ale nie może dowieść, że jest on od nich wolny (Buxton 1970). Tym samym
testowanie zmniejsza prawdopodobieństwo, że w przedmiocie testów pozostaną niewykryte defekty, ale
sam fakt niewykrycia defektów nie stanowi dowodu poprawności testowanego produktu.

2. Testowanie gruntowne jest niemożliwe. Przetestowanie wszystkiego jest możliwe tylko
w najprostszych przypadkach (Manna 1978). W związku z tym wysiłki związane z testowaniem powinny
być ukierunkowane raczej na stosowanie technik testowania (patrz rozdział 4), ustalanie priorytetów
przypadków testowych (patrz sekcja 5.1.5) oraz testowanie oparte na ryzyku (patrz podrozdział 5.2).

3. Wczesne testowanie oszczędza czas i pieniądze. Defekty usunięte na wczesnym etapie procesu nie
powodują powstania kolejnych defektów w pochodnych produktach pracy. Przekłada się to na obniżenie
kosztu jakości, ponieważ dzięki temu zmniejsza się liczba awarii występujących na późniejszych etapach
cyklu wytwarzania oprogramowania (Boehm 1981). Aby wcześnie wykryć defekty, należy jak najszybciej
rozpocząć zarówno testowanie statyczne (patrz rozdział 3), jak i testowanie dynamiczne (patrz rozdział 4).

4. Defekty mogą się kumulować. Zwykle większość wykrytych defektów lub większość awarii
występujących w fazie eksploatacji powstaje lub ma swoje źródło w niewielkiej liczbie modułów systemu
(Enders 1975), co jest ilustracją tzw. zasady Pareto. Dlatego przewidywane skupiska defektów i skupiska
defektów faktycznie zaobserwowane na etapie testowania lub eksploatacji są ważnym elementem
testowania opartego na ryzyku (patrz podrozdział 5.2).

5. Testy ulegają zużyciu. Wielokrotne powtarzanie tych samych testów prowadzi do spadku ich
skuteczności w wykrywaniu nowych defektów (Beizer 1990). Przezwyciężenie tego problemu może
wymagać zmodyfikowania dotychczasowych testów i danych testowych oraz napisania nowych testów.
W niektórych przypadkach powtarzanie tych samych testów może być jednak korzystne, czego przykładem
jest automatyczne testowanie regresji (patrz sekcja 2.2.3).

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 22 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

6. Testowanie zależy od kontekstu. Nie ma jednego uniwersalnego podejścia do testowania. Testowanie
wykonuje się w różny sposób w różnych kontekstach (Kaner 2011).

7. Przekonanie o braku defektów jest błędem. Przekonanie, że sama weryfikacja oprogramowania
zapewni pomyślne wdrożenie systemu, jest błędne. Nawet bardzo dokładne przetestowanie wszystkich
wyspecyfikowanych wymagań i usunięcie wszystkich znalezionych defektów nie chronią przed
zbudowaniem systemu, który nie zaspokoi potrzeb użytkowników i nie spełni ich oczekiwań, nie pomoże
klientowi w osiągnięciu celów biznesowych oraz będzie miał gorsze parametry od konkurencyjnych
rozwiązań. Dlatego oprócz weryfikacji należy również przeprowadzać walidację (Boehm 1981).

1.4. Czynności testowe, testalia i role związane z testami

Testowanie zależy od kontekstu, ale na poziomie ogólnym można wyróżnić pewne typowe grupy czynności
testowych, których pominięcie zmniejsza prawdopodobieństwo osiągnięcia celów testów. Powyższe grupy
czynności testowych składają się na proces testowy. Dobór procesu testowego do konkretnej sytuacji
zależy od wielu czynników. Decyzję co do tego, które czynności testowe mają być uwzględnione w tym
procesie oraz jak i kiedy mają być realizowane, podejmuje się zwykle na etapie planowania testów
i z uwzględnieniem konkretnej sytuacji (patrz podrozdział 5.1).

W kolejnych sekcjach opisano ogólne aspekty procesu testowego: czynności i zadania testowe, znaczenie
kontekstu, testalia, śledzenie powiązań między podstawą testów a testaliami oraz role występujące
w testowaniu.

Więcej informacji na temat procesów testowych zawiera standard ISO/IEC/IEEE 29119-2.

1.4.1. Czynności i zadania testowe

W procesie testowym wyróżnia się główne grupy czynności opisane poniżej. Chociaż wiele z tych
czynności może sprawiać wrażenie logicznie uszeregowanych, często są one realizowane metodą
iteracyjną lub w sposób równoległy. Ponadto zwykle wymagają dostosowania do potrzeb konkretnego
systemu i projektu.

Planowanie testów polega na zdefiniowaniu celów testów, a następnie dokonaniu wyboru podejścia, które

pozwoli najskuteczniej osiągnąć te cele w ramach ograniczeń narzuconych przez ogólny kontekst. Kwestię

planowania testów omówiono szczegółowo w podrozdziale 5.1.

Monitorowanie testów i nadzór nad testami. Monitorowanie testów polega na ciągłym sprawdzaniu
wszystkich czynności testowych i porównywaniu rzeczywistego postępu z założeniami przyjętymi w planie,
a nadzór nad testami polega na podejmowaniu działań, które są niezbędne do osiągnięcia celów
testowania. Kwestię monitorowania testów i nadzoru testów objaśniono dokładniej w podrozdziale 5.3.

Analiza testów polega na przeanalizowaniu podstawy testów w celu zidentyfikowania testowalnych cech
oraz zdefiniowania i określenia priorytetów związanych z nimi warunków testowych, z uwzględnieniem
występujących w danym przypadku ryzyk i poziomów ryzyka (patrz podrozdział 5.2). Ponadto czynność ta
obejmuje przeanalizowanie podstawy testów i przedmiotów testów w celu zidentyfikowania ewentualnych
defektów, jakie mogą w nich występować, oraz dokonanie oceny ich testowalności. Do przeprowadzania
analizy testów często wykorzystuje się techniki testowania (patrz rozdział 4). Analiza testów służy do
ustalenia tego, „co należy przetestować” (w kategoriach mierzalnych kryteriów pokrycia).

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 23 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Projektowanie testów polega na przekształceniu warunków testowych w przypadki testowe i inne testalia
(np. karty opisu testów). Czynność ta zwykle wiąże się ze zidentyfikowaniem elementów pokrycia, które
dostarczają wskazówek przy określaniu danych wejściowych dla przypadków testowych. Przy
wykonywaniu tej czynności można wykorzystać techniki testowania (patrz rozdział 4). Ponadto
projektowanie testów obejmuje określenie wymagań dotyczących danych testowych, zaprojektowanie
środowiska testowego oraz zidentyfikowanie innych niezbędnych narzędzi i elementów infrastruktury.
Reasumując, projektowanie testów odpowiada na pytanie o to, „jak należy testować”.

Implementacja testów polega na utworzeniu lub pozyskaniu testaliów niezbędnych do wykonywania
testów (np. danych testowych). Czynność ta może obejmować uszeregowanie przypadków testowych
w ramach procedur testowych, a często również połączenie ich w zestawy testowe. Ponadto grupa ta
obejmuje tworzenie skryptów testów manualnych i automatycznych, a także szeregowanie procedur
testowych według priorytetów i porządkowanie ich w ramach harmonogramu wykonywania testów
w sposób zapewniający efektywne wykonanie testów (patrz sekcja 5.1.5). Ostatnim elementem jest
zbudowanie środowiska testowego i sprawdzenie, czy zostało ono poprawnie skonfigurowane.

Wykonywanie testów polega na uruchamianiu testów zgodnie z harmonogramem wykonywania testów
(czyli na wykonywaniu przebiegów testów), przy czym może się to odbywać manualnie lub automatycznie.
Wykonywanie testów może przybierać wiele form, takich jak ciągłe testowanie lub sesje testowania
w parach. Rzeczywiste rezultaty testów są porównywane z rezultatami oczekiwanymi. Ponadto wyniki
testów są rejestrowane, a ewentualne anomalie są analizowane w celu ustalenia ich prawdopodobnych
przyczyn. Analiza ta umożliwia zgłaszanie anomalii na podstawie zaobserwowanych awarii (patrz
podrozdział 5.5).

Ukończenie testów obejmuje czynności, które są zwykle wykonywane w momencie osiągnięcia kamieni
milowych projektu (takich jak przekazanie do eksploatacji, zakończenie iteracji lub ukończenie testów
danego poziomu) w odniesieniu do wszelkich nieusuniętych defektów, zgłoszonych żądań zmian bądź
utworzonego backlogu produktu. Wszelkie testalia, które mogą okazać się przydatne w przyszłości, są
identyfikowane i archiwizowane bądź przekazywane odpowiednim zespołom. Środowisko testowe jest
zamykane w uzgodnionym stanie, a czynności testowe są analizowane w celu sformułowania wniosków
i zidentyfikowania udoskonaleń, które będzie można wprowadzić w przypadku przyszłych iteracji, wydań
lub projektów (patrz sekcja 2.1.6). Ostatnim elementem jest stworzenie sumarycznego raportu z testów
i przekazanie go interesariuszom.

1.4.2. Proces testowy w kontekście

Testowanie nie odbywa się w izolacji. Czynności testowe są integralnym elementem procesów wytwarzania
oprogramowania realizowanych w danej organizacji. Co więcej, testowanie jest finansowane także przez
interesariuszy, a jego nadrzędnym celem jest zaspokajanie ich potrzeb biznesowych. Z tego względu
sposób, w jaki wykonywane jest testowanie, zależy od kontekstu, na który składają się między innymi
następujące czynniki:

● interesariusze (w tym ich potrzeby, oczekiwania, wymagania, gotowość do współpracy itd.);

● członkowie zespołu (w tym ich umiejętności, wiedza, doświadczenie, dostępność, potrzeby
w zakresie szkoleń itd.);

● dziedzina biznesowa (krytyczność przedmiotu testów, zidentyfikowane ryzyka, potrzeby rynku,
konkretne uregulowania prawne itd.);

● czynniki techniczne (rodzaj oprogramowania, architektura produktu, zastosowana technologia itd.);

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 24 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● ograniczenia związane z projektem (zakres, terminy, budżet, zasoby itd.);

● czynniki organizacyjne (struktura organizacyjna, istniejące polityki, przyjęte praktyki itd.);

● cykl wytwarzania oprogramowania (praktyki w dziedzinie inżynierii oprogramowania, metody
wytwarzania itd.);

● narzędzia (dostępność, łatwość używania, zgodność itd.).

Powyższe czynniki mają wpływ na wiele kwestii związanych z testami, w tym na strategię testów,
stosowane techniki testowania, stopień automatyzacji testów, wymagany poziom pokrycia, szczegółowość
testalii, raportowanie itd.

1.4.3. Testalia

W wyniku wykonywania czynności testowych opisanych w sekcji 1.4.1 powstają produkty pracy nazywane
testaliami. Sposób wytwarzania, kształtowania i porządkowania takich produktów pracy oraz zarządzania
nimi, a także nadawane im nazwy różnią się znacznie w poszczególnych organizacjach. Dlatego do
zapewnienia spójności i integralności produktów pracy niezbędne jest właściwe zarządzanie konfiguracją
(patrz podrozdział 5.4). Poniżej opisano wybrane kategorie produktów pracy.

● Produkty pracy związane z planowaniem testów obejmują: plan testów, harmonogram testów,
rejestr ryzyk oraz kryteria wejścia i wyjścia (patrz podrozdział 5.1). Rejestr ryzyk zawiera wykaz
ryzyk wraz z informacjami o prawdopodobieństwie, wpływie i sposobach łagodzenia każdego
z nich (patrz podrozdział 5.2). Harmonogram testów, rejestr ryzyk oraz kryteria wejścia i wyjścia są
często elementami planu testów.

● Produkty pracy związane z monitorowaniem testów i nadzorem testów obejmują: raporty
o postępie testów (patrz sekcja 5.3.2), dokumentację dotyczącą dyrektyw nadzoru (patrz
podrozdział 5.3) oraz informacje o ryzyku (patrz podrozdział 5.2).

● Produkty pracy związane z analizą testów to między innymi: uszeregowane według priorytetów
warunki testowe (np. kryteria akceptacji, patrz sekcja 4.5.2) i raporty o defektach dotyczące
defektów w podstawie testów (jeśli nie zostały one natychmiast usunięte).

● Produkty pracy związane z projektowaniem testów obejmują: uszeregowane według
priorytetów przypadki testowe, karty opisu testów, elementy pokrycia oraz wymagania dotyczące
danych testowych i środowiska testowego.

● Produkty pracy związane z implementacją testów obejmują: procedury testowe, skrypty testów
automatycznych i manualnych, zestawy testowe, dane testowe, harmonogram wykonywania
testów oraz elementy środowiska testowego. Przykładowe elementy środowiska testowego to
między innymi: zaślepki, sterowniki, symulatory i wirtualizacja usług.

● Produkty pracy związane z wykonywaniem testów obejmują: dzienniki testów i raporty
o defektach (patrz podrozdział 5.5).

● Produkty pracy związane z ukończeniem testów to między innymi: sumaryczny raport z testów
(patrz sekcja 5.3.2), lista czynności do wykonania mających na celu wprowadzenie udoskonaleń
w kolejnych projektach lub iteracjach, udokumentowane wnioski oraz żądania zmian (np. w formie
backlogu produktu).

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 25 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

1.4.4. Śledzenie powiązań między podstawą testów a testaliami

W celu zapewnienia skutecznego monitorowania testów i nadzoru testów należy stworzyć i utrzymywać
mechanizm śledzenia powiązań między elementami podstawy testów a związanymi z nimi testaliami (np.
warunkami testowymi, ryzykami lub przypadkami testowymi), wynikami testów i defektami przez cały czas
trwania procesu testowego.

Dokładne śledzenie powiązań ułatwia ocenę pokrycia testowego, dlatego bardzo przydatne jest
zdefiniowanie w podstawie testów mierzalnych kryteriów pokrycia. Kryteria takie mogą pełnić funkcję
kluczowych wskaźników wydajności (ang. key performance indicator — KPI) sprzyjających wykonywaniu
określonych czynności i pozwalających określić stopień realizacji celów testów (patrz sekcja 1.1.1). Na
przykład:

● Śledzenie powiązań między przypadkami testowymi a wymaganiami pozwala potwierdzić, że
wymagania zostały pokryte przez przypadki testowe.

● Śledzenie powiązań między wynikami testów a ryzykami umożliwia ocenę poziomu ryzyka
rezydualnego (resztkowego) w przedmiocie testów.

Sprawne śledzenie powiązań umożliwia nie tylko ocenę pokrycia testowego — odpowiedni mechanizm
śledzenia pozwala również ustalać wpływ zmian oraz ułatwia przeprowadzanie audytów testów i spełnianie
kryteriów związanych z zarządzaniem w obszarze IT. Ponadto uwzględnienie statusu elementów podstawy
testów umożliwia tworzenie bardziej zrozumiałych raportów o postępie testów i sumarycznych raportów
z testów, co z kolei ułatwia przekazywanie interesariuszom informacji o aspektach technicznych testowania
w zrozumiałej dla nich formie. Kolejną zaletą śledzenia jest możliwość udzielania informacji potrzebnych
do oceny jakości produktów, wydajności procesów i postępu w realizacji projektu z punktu widzenia celów
biznesowych.

1.4.5. Role w procesie testowania

W niniejszym sylabusie omówiono dwie zasadnicze role występujące w testowaniu: rolę związaną
z zarządzaniem testami i rolę związaną z testowaniem. Czynności i zadania wyznaczone osobom
pełniącym obie role zależą od takich czynników jak kontekst projektu i produktu, umiejętności konkretnych
osób oraz specyfika organizacji.

Osoba pełniąca rolę związaną z zarządzaniem testami ponosi ogólną odpowiedzialność za proces testowy
i pracę zespołu testowego oraz za kierowanie przebiegiem czynności testowych. Rola ta polega głównie
na wykonywaniu czynności związanych z planowaniem testów, monitorowaniem testów, nadzorem
testóworaz ukończeniem testów. Sposób wykonywania obowiązków wynikających z roli związanej
z zarządzaniem testami zależy od kontekstu. Na przykład w ramach zwinnego wytwarzania
oprogramowania niektóre z zadań związanych z zarządzaniem testami może wykonywać zespół zwinny,
a zadania obejmujące swoim zasięgiem kilka zespołów lub całą organizację mogą wykonywać kierownicy
testów spoza zespołu tworzącego oprogramowanie.

Osoba pełniąca rolę związaną z testowaniem ponosi ogólną odpowiedzialność za aspekty techniczne
testowania. Rola ta polega głównie na podejmowaniu działań związanych z analizą, projektowaniem,
implementacją i wykonywaniem testów.

W zależności od etapu prac powyższe role mogą pełnić różne osoby — na przykład rolę związaną
z zarządzaniem testami może pełnić lider zespołu, kierownik testów, kierownik zespołu tworzącego

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 26 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

oprogramowanie itd. Ponadto ta sama osoba może pełnić jednocześnie rolę związaną z testowaniem i rolę
związaną z zarządzaniem testami.

1.5. Niezbędne umiejętności i dobre praktyki w dziedzinie testowania

Umiejętność to zdolność do prawidłowego wykonywania określonej czynności wynikająca z wiedzy,
praktyki i osobistych uzdolnień. Aby móc właściwie wykonywać swoją pracę, dobry tester musi posiadać
pewne niezbędne umiejętności, takie jak umiejętność sprawnej pracy w zespole czy wykonywania testów
na różnych poziomach niezależności.

1.5.1. Ogólne umiejętności wymagane w związku z testowaniem

W przypadku testerów szczególnie istotne są następujące umiejętności o charakterze ogólnym:

● wiedza w dziedzinie testowania (umożliwiająca zwiększanie skuteczności testowania np. poprzez
zastosowanie technik testowania);

● staranność, ostrożność, ciekawość, dbałość o szczegóły i metodyczność (niezbędne do
identyfikowania defektów, zwłaszcza defektów trudnych do wykrycia);

● umiejętności komunikacyjne oraz umiejętność aktywnego słuchania i pracy w zespole
(pozwalające sprawnie komunikować się ze wszystkimi interesariuszami, w zrozumiały sposób
przekazywać informacje innym osobom oraz zgłaszać i omawiać defekty);

● umiejętność analitycznego i krytycznego myślenia oraz kreatywność (umożliwiające zwiększanie
skuteczności testowania);

● wiedza techniczna (pozwalająca zwiększyć efektywność testowania np. poprzez korzystanie
z odpowiednich narzędzi testowych);

● wiedza merytoryczna (pozwalająca zrozumieć użytkowników i przedstawicieli jednostek
biznesowych oraz sprawnie się z nimi porozumiewać).

Z uwagi na specyfikę pracy testera istotnym problemem może być powszechna u ludzi skłonność do
obwiniania osoby przynoszącej złe wiadomości, dlatego tak ważne są w tym przypadku umiejętności
komunikacyjne. Informowanie o wynikach testów może być odbierane jako krytyka produktu i jego autora,
a zjawisko psychologiczne zwane efektem potwierdzenia (ang. confirmation bias) może utrudniać
zaakceptowanie informacji sprzecznych z dotychczasowymi przekonaniami. Ponadto niektóre osoby mogą
postrzegać testowanie jako czynność destrukcyjną, nawet jeśli przyczynia się ono wydatnie do powodzenia
projektu i podnoszenia jakości produktów. Aby przełamać ten stereotyp, należy przekazywać informacje
o defektach i awariach w sposób jak najbardziej konstruktywny.

1.5.2. Podejście „cały zespół”

Jedną z ważnych umiejętności, jaką powinien dysponować tester, jest umiejętność sprawnej pracy
zespołowej i działania na rzecz realizacji celów zespołu. Podejście „cały zespół” (ang. whole-team
approach), które ma swoje początki w modelu programowania ekstremalnego (ang. eXtreme Programming
— XP) (patrz podrozdział 2.1), opiera się właśnie na tej umiejętności.

W ramach podejścia „cały zespół” każdy członek zespołu, który dysponuje niezbędną wiedzą
i umiejętnościami, może wykonywać dowolne zadania, a odpowiedzialność za jakość spoczywa w równym

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 27 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

stopniu na wszystkich. Członkowie zespołu pracują w tym samym obszarze roboczym (fizycznym lub
wirtualnym), ponieważ sprzyja to wymianie informacji i współdziałaniu. Podejście takie zwiększa dynamikę
pracy zespołowej, usprawnia wymianę informacji i współpracę w zespole oraz tworzy efekt synergii,
ponieważ umożliwia wykorzystanie różnych kombinacji umiejętności na rzecz realizacji projektu.

Testerzy ściśle współpracują z innymi członkami zespołu, aby zagwarantować osiągnięcie wymaganych
poziomów jakości. Obejmuje to również współpracę z przedstawicielami jednostek biznesowych w celu
stworzenia odpowiednich testów akceptacyjnych oraz z programistami w celu uzgodnienia strategii testów
i podjęcia decyzji co do sposobu automatyzacji testów. W ten sposób testerzy mogą przekazywać wiedzę
w dziedzinie testowania innym członkom zespołu oraz wpływać na proces wytwarzania produktu.

Należy jednak pamiętać, że w pewnych sytuacjach zaangażowanie całego zespołu może nie być
optymalnym rozwiązaniem. Dotyczy to na przykład systemów krytycznych ze względów bezpieczeństwa,
w przypadku których może być wymagany wysoki poziom niezależności testów.

1.5.3. Niezależność testowania

Pewien stopień niezależności często zwiększa skuteczność wykrywania defektów, ponieważ działania
autora i testera mogą być obarczone różnymi błędami poznawczymi (por. Salman 1995). Jednocześnie
jednak niezależność nie zastępuje znajomości produktu, a programiści mogą efektywnie wykrywać wiele
defektów w tworzonym przez siebie kodzie.

Produkty pracy mogą być testowane przez autora (brak niezależności), przez innych członków zespołu
autora (pewien stopień niezależności), przez testerów spoza zespołu autora w obrębie danej organizacji
(wysoki poziom niezależności) lub przez testerów spoza organizacji (bardzo wysoki poziom niezależności).
W większości projektów najlepiej sprawdza się przeprowadzanie testów na wielu poziomach niezależności
(przykładem może być sytuacja, w której programiści wykonują testowanie modułowe i testowanie
integracji modułów, zespół testowy wykonuje testowanie systemowe i testowanie integracji systemów,
a przedstawiciele jednostek biznesowych wykonują testowanie akceptacyjne).

Główną korzyścią wynikającą z niezależności testowania jest prawdopodobieństwo wykrycia przez
niezależnych testerów innego rodzaju awarii i defektów niż te wykryte przez programistów ze względu na
różne doświadczenia, techniczne punkty widzenia i błędy poznawcze. Ponadto niezależny tester może
zweryfikować, zakwestionować lub obalić założenia przyjęte przez interesariuszy na etapie specyfikowania
i implementacji systemu.

Nie wolno też jednak zapominać o pewnych wadach. Odizolowanie niezależnych testerów od zespołu
deweloperskiego może prowadzić do braku współpracy, problemów z wymianą informacji, a nawet konfliktu
z tym zespołem. Sytuacja taka rodzi niebezpieczeństwo utraty przez programistów poczucia
odpowiedzialności za jakość oraz stwarza ryzyko, że niezależni testerzy zostaną potraktowani jako wąskie
gardło i obarczeni winą za nieterminowe przekazanie produktu do eksploatacji.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 28 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

2. Testowanie w cyklu wytwarzania oprogramowania —
130 minut

Słowa kluczowe

poziom testów, przedmiot testów, przesunięcie w lewo, testowanie akceptacyjne, testowanie
białoskrzynkowe, testowanie czarnoskrzynkowe, testowanie funkcjonalne, testowanie integracji modułów,
testowanie integracji systemów, testowanie integracyjne, testowanie modułowe, testowanie
niefunkcjonalne, testowanie pielęgnacyjne, testowanie potwierdzające, testowanie regresji, przesunięcie w
lewo, testowanie systemowe, typ testów

Cele nauczania w rozdziale 2:

2.1 Testowanie w kontekście cyklu wytwarzania oprogramowania

FL-2.1.1 (K2) Kandydat wyjaśnia wpływ wybranego modelu cyklu wytwarzania oprogramowania na
testowanie.

FL-2.1.2 (K1) Kandydat pamięta dobre praktyki testowania mające zastosowanie do wszystkich modeli
cyklu wytwarzania oprogramowania.

FL-2.1.3 (K1) Kandydat podaje przykłady podejść typu „najpierw test” w kontekście wytwarzania
oprogramowania.

FL-2.1.4 (K2) Kandydat podsumowuje, w jaki sposób metodyka DevOps może wpłynąć na testowanie.

FL-2.1.5 (K2) Kandydat wyjaśnia, na czym polega przesunięcie w lewo.

FL-2.1.6 (K2) Kandydat wyjaśnia, w jaki sposób retrospektywy mogą posłużyć jako mechanizmy
doskonalenia procesów.

2.2 Poziomy testów i typy testów

FL-2.2.1 (K2) Kandydat rozróżnia poszczególne poziomy testów.

FL-2.2.2 (K2) Kandydat rozróżnia poszczególne typy testów.

FL-2.2.3 (K2) Kandydat odróżnia testowanie potwierdzające od testowania regresji.

2.3 Testowanie pielęgnacyjne

FL-2.3.1 (K2) Kandydat podsumowuje testowanie pielęgnacyjne i zdarzenia je wyzwalające.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 29 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

2.1. Testowanie w kontekście modelu cyklu wytwarzania oprogramowania

Model cyklu wytwarzania oprogramowania (ang. software development lifecycle — SDLC) stanowi
abstrakcyjne, ogólne odwzorowanie procesu wytwarzania oprogramowania. Model ten określa wzajemne
relacje — zarówno logiczne, jak i chronologiczne — między poszczególnymi fazami wytwarzania
oprogramowania oraz rodzajami czynności wykonywanych w ramach tego procesu. Przykładami modeli
cyklu wytwarzania oprogramowania są między innymi: sekwencyjne modele wytwarzania oprogramowania
(np. model kaskadowy - ang. waterfall - lub model V), iteracyjne modele wytwarzania oprogramowania (np.
model spiralny lub prototypowanie) oraz przyrostowe modele wytwarzania oprogramowania (np. model
Unified Process).

Niektóre czynności wykonywane w ramach procesów wytwarzania oprogramowania można również opisać
przy użyciu bardziej szczegółowych metod wytwarzania oprogramowania i praktyk zwinnych. Przykładami
są między innymi: wytwarzanie sterowane testami akceptacyjnymi (ang. acceptance test-driven
development — ATDD), wytwarzanie sterowane zachowaniem (ang. behavior-driven development —
BDD), projektowanie oparte na domenie (ang. domain-driven design — DDD), programowanie ekstremalne
(ang. eXtreme Programming — XP), wytwarzanie oparte na cechach (ang. feature-driven development —
FDD), Kanban, Lean IT, Scrum oraz wytwarzanie sterowane testami (ang. test-driven development —
TDD).

2.1.1. Wpływ cyklu wytwarzania oprogramowania na testowanie

Warunkiem powodzenia procesu testowania jest dopasowanie go do przyjętego cyklu wytwarzania
oprogramowania. Wybór modelu cyklu wytwarzania oprogramowania wpływa na:

● zakres i czas wykonywania czynności testowych (np. poziomy testów i typy testów);

● szczegółowość testaliów;

● wybór technik testowania i podejścia do testowania;

● zakres automatyzacji testów;

● role i obowiązki testera.

W przypadku sekwencyjnych modeli wytwarzania oprogramowania w początkowych fazach procesu
testerzy uczestniczą zazwyczaj w przeglądach wymagań, analizie testów oraz projektowaniu testów. Kod
wykonywalny powstaje z reguły w późniejszych fazach, co w większości przypadków uniemożliwia
przeprowadzenie testowania dynamicznego na wczesnym etapie cyklu wytwarzania oprogramowania.

W niektórych iteracyjnych modelach wytwarzaniai przyrostowych modelach wytwarzania zakłada się, że
w wyniku każdej iteracji powstaje działający prototyp lub kolejna wersja przyrostowa produktu. Oznacza to,
że w każdej iteracji można wykonywać zarówno testowanie statyczne, jak i testowanie dynamiczne na
wszystkich poziomach testów. Jednocześnie częste dostarczanie wersji przyrostowych wymaga szybkiego
przekazywania informacji zwrotnych i szeroko zakrojonego testowania regresji.

W przypadku zwinnego wytwarzania oprogramowania dopuszcza się wprowadzanie zmian przez cały czas
trwania projektu. Z tego powodu w projektach zwinnych wskazane jest tworzenie uproszczonej
dokumentacji produktów pracy i stosowanie na dużą skalę automatyzacji testów, co ułatwia testowanie
regresji. Ponadto większość testowania manualnego wykonuje się zwykle przy użyciu technik testowania
opartych na doświadczeniu (patrz podrozdział 4.4), które nie wymagają wcześniejszego podjęcia szeroko
zakrojonych działań związanych z analizą i projektowaniem testów.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 30 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

2.1.2. Model cyklu wytwarzania oprogramowania a dobre praktyki testowania

Poniżej wymieniono kilka dobrych praktyk testowania, które mają zastosowanie do każdego modelu cyklu
wytwarzania oprogramowania:

● Do każdej czynności związanej z wytwarzaniem oprogramowania powinna być przypisana
odpowiadająca jej czynność testowa, tak aby wszystkie czynności związane z wytwarzaniem
oprogramowania podlegały kontroli jakości.

● Poszczególnym poziomom testów (patrz sekcja 2.2.1) powinny odpowiadać konkretne i różne cele
testów, co pozwoli zapewnić odpowiednio szeroki zakres testów, a przy tym uniknąć
nadmiarowości.

● Aby zapewnić zgodność z zasadą wczesnego testowania (patrz podrozdział 1.3), analizę
i projektowanie testów na potrzeby danego poziomu testów należy rozpocząć w odpowiadającej
temu poziomowi fazie cyklu wytwarzania oprogramowania.

● Testerzy powinni uczestniczyć w przeglądach produktów pracy natychmiast po udostępnieniu ich
wersji roboczych, tak aby wcześniejsze testowanie i wykrywanie defektów pomagało w realizacji
przesunięcia w lewo (ang. shift left; patrz sekcja 2.1.5).

2.1.3. Testowanie jako czynnik określający sposób wytwarzania
oprogramowania

Wytwarzanie sterowane testami (TDD), wytwarzanie sterowane testami akceptacyjnymi (ATDD)
i wytwarzanie sterowane zachowaniem (BDD) to podobne podejścia do wytwarzania oprogramowania,
w ramach których testy traktuje się jako czynnik określający sposób prowadzenia prac programistycznych.
Każde z tych podejść realizuje zasadę wczesnego testowania (patrz podrozdział 1.3) i przesunięcie w lewo
(patrz sekcja 2.1.5), ponieważ testy są definiowane przed rozpoczęciem pisania kodu. Ponadto podejścia
te umożliwiają stosowanie iteracyjnego modelu wytwarzania. Poniżej przedstawiono najważniejsze cechy
każdego z nich:

Wytwarzanie sterowane testami (TDD):

● Zamiast rozbudowanych mechanizmów projektowania oprogramowania do określania sposobu
tworzenia kodu wykorzystywane są przypadki testowe (Beck 2003).

● Najpierw pisane są testy, a dopiero potem powstaje kod umożliwiający ich pomyślne przejście.
Następnie testy i kod podlegają refaktoryzacji.

Wytwarzanie sterowane testami akceptacyjnymi (ATDD; patrz sekcja 4.5.3):

● Testy są tworzone na podstawie kryteriów akceptacji w ramach procesu projektowania systemu
(Gärtner 2011).

● Testy są pisane przed wytworzeniem części aplikacji, która ma je pomyślnie przejść.

Wytwarzanie sterowane zachowaniem (BDD):

● Pożądane zachowanie aplikacji wyraża się w postaci przypadków testowych napisanych w prostej
formie języka naturalnego, która jest zrozumiała dla interesariuszy — zwykle w formacie
Given/When/Then (Mając/Kiedy/Wtedy) (Chelimsky 2010).

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 31 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● Następnie przypadki testowe powinny być automatycznie przekładane na możliwe do wykonania
testy.

W ramach wszystkich powyższych podejść testy mogą zostać zarejestrowane w postaci testów
automatycznych, co pozwala zapewnić należytą jakość kodu w przypadku przyszłej adaptacji lub
refaktoryzacji.

2.1.4. Metodyka DevOps a testowanie

DevOps to metodyka organizacyjna, której celem jest uzyskanie efektu synergii poprzez ukierunkowanie

działań związanych z wytwarzaniem oprogramowania (w tym z testowaniem) oraz działań związanych

z jego eksploatacją na realizację szeregu wspólnych celów. Do wdrożenia tej metodyki niezbędna jest

zmiana kultury organizacyjnej polegająca na wypełnieniu luki między strukturami odpowiedzialnymi za

wytwarzanie (w tym testowanie) a strukturami odpowiedzialnymi za eksploatację przy jednoczesnym

uznaniu, że zadania realizowane przez te struktury są równie istotne. DevOps sprzyja większej autonomii

zespołów, szybszemu przekazywaniu informacji zwrotnych, ściślejszej integracji łańcuchów narzędzi oraz

stosowaniu praktyk technicznych takich jak ciągła integracja (ang. continuous integration — CI) i ciągłe

dostarczanie (ang. continuous delivery — CD). Dzięki temu zespoły mogą szybciej tworzyć, testować

i przekazywać do eksploatacji wysokiej jakości kod z wykorzystaniem potoku dostarczania DevOps (Kim

2016).

Z perspektywy testowania do korzyści ze stosowania metodyki DevOps można zaliczyć:

● szybkie otrzymywanie informacji zwrotnych na temat jakości kodu oraz ewentualnego

niekorzystnego wpływu zmian na dotychczasowy kod;

● ciągłą integrację, która sprzyja przesunięciu w lewo w obszarze testowania (patrz sekcja 2.1.5)

poprzez zachęcenie programistów do dostarczania wysokiej jakości kodu sprawdzonego testami

modułowymi i analizą statyczną;

● promowanie zautomatyzowanych procesów takich jak ciągła integracja i ciągłe dostarczanie, które

ułatwiają tworzenie stabilnych środowisk testowych;

● zwiększenie widoczności niefunkcjonalnych charakterystyk jakościowych (np. wydajności lub

niezawodności);

● zmniejszenie zapotrzebowania na powtarzalne testowanie manualne dzięki automatyzacji, jaką

zapewnia potok dostarczania;

● zmniejszenie ryzyka związanego z regresją z uwagi na skalę i zasięg automatycznych testów

regresji.

Z zastosowaniem metodyki DevOps wiążą się też jednak pewne ryzyka i wyzwania, wśród których można

wymienić:

● konieczność zdefiniowania i ustanowienia potoku dostarczania DevOps;

● konieczność wprowadzenia i utrzymywania narzędzi do ciągłej integracji lub ciągłego dostarczania;

● konieczność przeznaczenia dodatkowych zasobów na automatyzację testów oraz trudności
związane z wprowadzeniem i utrzymaniem mechanizmów automatyzacji.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 32 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Chociaż metodyka DevOps zakłada duży udział testów automatycznych, nadal konieczne jest również
testowanie manualne — zwłaszcza z perspektywy użytkownika.

2.1.5. Przesunięcie w lewo (ang. shift left approach)

Zasada wczesnego testowania (patrz podrozdział 1.3) jest niekiedy nazywana „przesunięciem w lewo”,
ponieważ w myśl tej zasady testowanie odbywa się na wcześniejszym etapie cyklu wytwarzania
oprogramowania. Przesunięcie w lewo sugeruje, że testowanie powinno odbywać się wcześniej (np. bez
czekania na implementację kodu bądź integrację modułów), ale nie oznacza to, że należy zaniedbywać
wykonywanie testów na dalszych etapach cyklu życia wytwarzania oprogramowania.

Poniżej przedstawiono kilka dobrych praktyk, które obrazują, w jaki sposób można wdrożyć przesunięcie
w lewo w testowaniu. Są to między innymi:

● dokonywanie przeglądu specyfikacji z punktu widzenia testerów (przegląd specyfikacji pozwala
często znaleźć potencjalne defekty, takie jak niejasności, braki czy niespójności);

● pisanie przypadków testowych przed rozpoczęciem pisania kodu i uruchamianie kodu w jarzmie
testowym podczas implementacji;

● korzystanie z mechanizmu ciągłej integracji (a jeszcze lepiej — ciągłego dostarczania), ponieważ
mechanizm ten pozwala szybko uzyskiwać informacje zwrotne i wykonywać automatyczne testy
modułowe w odniesieniu do kodu źródłowego przekazywanego do repozytorium kodu;

● przeprowadzanie analizy statycznej kodu źródłowego przed rozpoczęciem testowania
dynamicznego lub w ramach zautomatyzowanego procesu;

● wykonywanie testowania niefunkcjonalnego już od poziomu testów modułowych wszędzie tam,
gdzie jest to możliwe (jest to forma przesunięcia w lewo, ponieważ testy niefunkcjonalne są często
wykonywane na późniejszych etapach cyklu wytwarzania oprogramowania, gdy jest już dostępny
kompletny system wraz z reprezentatywnym środowiskiem testowym).

Przesunięcie w lewo może wymagać dodatkowych szkoleń, nakładów pracy i/lub kosztów na
wcześniejszym etapie procesu, ale z założenia powinno to zostać zrekompensowane przez zmniejszenie
nakładów pracy lub obniżenie kosztów na późniejszych etapach.

W przypadku przesunięcia w lewo ważne jest przekonanie interesariuszy o zasadności takiego podejścia
i uzyskanie ich poparcia w tym zakresie.

2.1.6. Retrospektywy i doskonalenie procesów

Retrospektywy są często organizowane po zakończeniu projektu lub iteracji bądź osiągnięciu kamienia
milowego związanego z przekazaniem do eksploatacji, ale w razie potrzeby mogą również odbywać się
w innych momentach. Termin i przebieg retrospektywy zależy od przyjętego modelu cyklu wytwarzania
oprogramowania. Podczas tego rodzaju spotkań uczestnicy (nie tylko testerzy, ale również np. programiści,
architekci, właściciel produktu czy analitycy biznesowi) omawiają następujące kwestie:

● Jakie elementy zrealizowano pomyślnie i co należy zachować?

● Jakie działania zakończyły się niepowodzeniem i mogą zostać udoskonalone?

● W jaki sposób należy w przyszłości uwzględnić powyższe udoskonalenia i wykorzystać pomyślnie
zrealizowane elementy?

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 33 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Rezultaty należy udokumentować — zwykle robi się to w ramach sumarycznego raportu z testów (patrz
sekcja 5.3.2). Retrospektywy mają kluczowe znaczenie dla pomyślnej realizacji zasady ciągłego
doskonalenia, dlatego ważne jest zweryfikowanie, czy zalecane usprawnienia zostały wprowadzone
w życie.

Typowe korzyści z punktu widzenia testowania to między innymi:

● zwiększenie skuteczności i efektywności testów (np. poprzez wprowadzenie w życie sugestii
dotyczących doskonalenia procesów);

● podniesienie jakości testaliów (np. w wyniku wspólnego przeglądu procesów testowych);

● zacieśnienie więzi w zespole i wspólne uczenie się (np. dzięki możliwości zgłaszania problemów
i proponowania usprawnień);

● podniesienie jakości podstawy testów (np. dzięki możliwości identyfikowania i usuwania
niedociągnięć związanych z jakością i zakresem wymagań);

● usprawnienie współpracy między programistami a testerami (np. dzięki regularnemu weryfikowaniu
i optymalizowaniu zasad współpracy).

2.2. Poziomy testów i typy testów

Poziomy testów to grupy czynności testowych, które organizuje się i którymi zarządza się wspólnie. Każdy
poziom testów jest instancją procesu testowego wykonywaną w odniesieniu do oprogramowania w danej
fazie wytwarzania — od pojedynczych modułów po kompletne systemy lub, jeśli ma to zastosowanie
w danym przypadku, po systemy systemów.

Poziomy testów są powiązane z innymi czynnościami wykonywanymi w ramach cyklu wytwarzania
oprogramowania. W sekwencyjnych modelach cyklu wytwarzania oprogramowania poziomy testów często
definiuje się w taki sposób, aby kryteria wyjścia jednego poziomu były elementem kryteriów wejścia
kolejnego poziomu, natomiast w niektórych modelach iteracyjnych zasada ta może nie mieć zastosowania.
Czynności związane z wytwarzaniem oprogramowania mogą obejmować wiele poziomów testów,
a poziomy testów mogą zachodzić na siebie w czasie.

Typy testów to grupy czynności testowych związanych z konkretnymi charakterystykami jakościowymi, przy
czym większość z tych czynności można wykonywać na każdym poziomie testów.

2.2.1. Poziomy testów

W niniejszym sylabusie opisano pięć poziomów testów.

● Testowanie modułowe (zwane także testowaniem jednostkowym lub testowaniem komponentów)

skupia się na oddzielnym testowaniu poszczególnych modułów. Często wymaga ono stosowania

określonych elementów pomocniczych, takich jak jarzma testowe lub struktury do testów

jednostkowych (ang. frameworks). Testowanie modułowe jest zwykle wykonywane przez

programistów w środowiskach tworzenia oprogramowania.

● Testowanie integracji modułów (zwane także testowaniem połączenia) skupia się na interfejsach

i interakcjach między modułami. Sposób testowania integracji modułów zależy w dużej mierze od

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 34 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

strategii integracji — może to być na przykład strategia zstępująca, strategia wstępująca bądź

strategia typu „wielki wybuch” (ang. big bang).

● Testowanie systemowe skupia się na ogólnym zachowaniu i możliwościach całego systemu lub

produktu. Często obejmuje również kompleksowe testowanie funkcjonalne wszystkich zadań, jakie

system ten może wykonywać, oraz testowanie niefunkcjonalne charakterystyk jakościowych.

W przypadku niektórych niefunkcjonalnych charakterystyk jakościowych wskazane jest

przeprowadzanie testów kompletnego systemu w reprezentatywnym środowisku testowym (np.

testowanie użyteczności), ale można również zastosować symulacje podsystemów. Testowanie

systemowe może być wykonywane przez niezależny zespół testowy i jest powiązane ze

specyfikacjami systemu.

● Testowanie integracji systemów skupia się na interfejsach łączących system podlegający

testowaniu z innymi systemami oraz usługami zewnętrznymi. Do testowania integracji systemów

niezbędne są odpowiednie środowiska testowe — w miarę możliwości zbliżone do środowiska

produkcyjnego.

● Testowanie akceptacyjne skupia się na przeprowadzeniu walidacji i wykazaniu, że system jest

gotowy do wdrożenia (tzn. zaspokaja potrzeby biznesowe użytkownika). W idealnych warunkach

testowanie akceptacyjne powinni przeprowadzać docelowi użytkownicy. Najważniejsze formy

testowania akceptacyjnego to: testowanie akceptacyjne przez użytkownika, operacyjne testy

akceptacyjne, testowanie akceptacyjne zgodności z umową i testowanie akceptacyjne zgodności

z prawem, testowanie alfa oraz testowanie beta.

Podstawą rozróżnienia między poszczególnymi poziomami testów (w celu uniknięcia nakładania się
czynności testowych) są między innymi następujące atrybuty:

● przedmiot testów;

● cele testów;

● podstawa testów;

● defekty i awarie;

● podejście i odpowiedzialności.

2.2.2. Typy testów

Istnieje wiele typów testów, które można stosować w ramach projektów. W niniejszym sylabusie omówiono

cztery z nich.

Testowanie funkcjonalne polega na dokonaniu oceny funkcji, które powinien realizować dany moduł lub
system. Funkcje opisują to, „co” powinien robić dany przedmiot testów. Głównym celem testowania
funkcjonalnego jest sprawdzenie kompletności funkcjonalnej, poprawności funkcjonalnej oraz
adekwatności funkcjonalnej.

Testowanie niefunkcjonalne ma na celu dokonanie oceny atrybutów innych niż charakterystyki
funkcjonalne modułu lub systemu. Testowanie niefunkcjonalne pozwala sprawdzić to, „jak dobrze”
zachowuje się dany system. Głównym celem testowania niefunkcjonalnego jest sprawdzenie
niefunkcjonalnych charakterystyk jakościowych..

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 35 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Standard ISO/IEC 25010 podaje następującą klasyfikację niefunkcjonalnych charakterystyk jakościowych:

● wydajność działania;

● kompatybilność;

● użyteczność (znana również jako zdolność do interakcji);

● niezawodność;

● zabezpieczenia;

● utrzymywalność;

● przenaszalność (znana również jako elastyczność);

● bezpieczeństwo.

W pewnych przypadkach wskazane jest rozpoczęcie testowania niefunkcjonalnego na wczesnym etapie
cyklu wytwarzania (np. w ramach przeglądów oraz testowania modułowego lub systemowego). Podstawą
wielu testów niefunkcjonalnych są testy funkcjonalne — w praktyce wykorzystywane są te same testy
funkcjonalne, ale celem jest sprawdzenie, czy podczas wykonywania danej funkcji spełniane są wymogi
niefunkcjonalne (np. czy funkcja jest wykonywana w określonym czasie lub czy można ją przenieść na
nową platformę). Zbyt późne wykrycie defektów odnoszących się do charakterystyk niefunkcjonalnych
może być bardzo dużym zagrożeniem dla powodzenia projektu. Do wykonania testowania
niefunkcjonalnego może być niekiedy niezbędne bardzo konkretne środowisko testowe, takie jak
laboratorium użyteczności w przypadku testowania użyteczności.

Testowanie czarnoskrzynkowe (patrz podrozdział 4.2) opiera się na specyfikacjach, a testy wyprowadza
się na podstawie dokumentacji niezwiązanej z wewnętrzną strukturą przedmiotu testów. Głównym celem
testowania czarnoskrzynkowego jest sprawdzenie zachowania systemu pod kątem zgodności ze
specyfikacją.

Testowanie białoskrzynkowe (patrz podrozdział 4.3) ma charakter strukturalny, a testy wyprowadza się
na podstawie implementacji lub struktury wewnętrznej danego systemu (np. kodu, architektury, przepływów
pracy i przepływów danych). Głównym celem testowania białoskrzynkowego jest uzyskanie
akceptowalnego poziomu pokrycia testowego bazowej struktury systemu.

Wszystkie cztery typy testów wymienione powyżej można stosować na wszystkich poziomach testów,
chociaż działania podejmowane na każdym z tych poziomów będą inaczej ukierunkowane. Do
wyprowadzania warunków testowych i przypadków testowych na potrzeby wszystkich wspomnianych
typów testów można używać różnych technik testowania.

2.2.3. Testowanie potwierdzające i testowanie regresji

W modułach lub systemach są często wprowadzane zmiany mające na celu rozszerzenie funkcjonalności
poprzez dodanie nowego elementu bądź przywrócenie prawidłowej funkcjonalności poprzez usunięcie
defektu. Oznacza to, że proces testowania powinien również obejmować testowanie potwierdzające
i testowanie regresji.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 36 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Testowanie potwierdzające ma na celu sprawdzenie, czy pierwotny defekt został pomyślnie usunięty.

Zależnie od poziomu ryzyka skorygowaną wersję oprogramowania można przetestować na kilka

sposobów, w tym poprzez:

● wykonanie wszystkich przypadków testowych, które wcześniej nie zostały zaliczone z powodu defektu

lub

● dodanie nowych testów w celu pokrycia ewentualnych zmian, które były niezbędne do usunięcia

defektu.

Jeśli jednak przy usuwaniu defektów brakuje czasu lub środków finansowych, testowanie potwierdzające
można ograniczyć do wykonania kroków testowych potrzebnych do odtworzenia awarii spowodowanej
defektem i sprawdzenia, czy tym razem ona nie występuje.

Testowanie regresji pozwala sprawdzić, czy wprowadzona zmiana (w tym także poprawka, która była już
przedmiotem testowania potwierdzającego) nie spowodowała negatywnych konsekwencji. Konsekwencje
takie mogą dotyczyć modułu, w którym wprowadzono zmianę, innych modułów tego samego systemu,
a nawet innych podłączonych systemów, w związku z czym testowanie regresji może wykraczać poza
przedmiot testów i obejmować również środowisko, w którym się on znajduje. Dlatego zalecane jest
wykonywanie w pierwszej kolejności analizy wpływu mającej na celu zoptymalizowanie zasięgu testowania
regresji, co pozwoli wskazać elementy oprogramowania, na które będzie mogła wpłynąć wprowadzona
zmiana.

Zestawy testów regresji są wykonywane wielokrotnie, a liczba związanych z nimi przypadków testowych
rośnie z każdą iteracją lub każdą wersją, w związku z czym testowanie regresji świetnie nadaje się do
automatyzacji. Dlatego też automatyzację tego rodzaju testów należy rozpocząć na początkowym etapie
projektu. Automatyzacja testów regresji jest również dobrą praktyką w przypadku korzystania
z mechanizmu ciągłej integracji — na przykład w ramach metodyki DevOps (patrz sekcja 2.1.4). Zależnie
od sytuacji, automatyzacja ta może obejmować testy regresji na różnych poziomach testów.

Testowanie potwierdzające i/lub testowanie regresji należy wykonywać w odniesieniu do przedmiotu testów

na wszystkich poziomach testów, na których zostały usunięte defekty i/lub wprowadzone zmiany.

2.3. Testowanie pielęgnacyjne

Wyróżnia się kilka kategorii testowania pielęgnacyjnego. Pielęgnacja może obejmować między innymi
działania naprawcze, działania wynikające z konieczności dostosowania oprogramowania do zmian
w środowisku oraz działania mające na celu zwiększenie wydajności lub utrzymywalności (szczegółowe
informacje na ten temat zawiera standard ISO/IEC 14764). Tym samym testowanie pielęgnacyjne może
wynikać z wdrożenia oprogramowania lub przekazania go do eksploatacji zarówno w sposób planowy, jak
i niezaplanowany — na przykład w związku z poprawkami doraźnymi (ang. hot fix). Przed dokonaniem
zmiany można przeprowadzić analizę wpływu, aby ustalić, czy zmianę tę należy faktycznie wprowadzić
(z uwagi na potencjalne konsekwencje w innych obszarach systemu). Ponadto jeśli dany system znajduje
się w eksploatacji, testowanie zmian obejmuje zarówno sprawdzenie, czy zmiana została wprowadzona
pomyślnie, jak i wykrycie ewentualnych regresji w niezmienionych częściach systemu (czyli zwykle
w większości jego obszarów).

Na zakres testowania pielęgnacyjnego wpływają zwykle:

● poziom ryzyka związanego ze zmianą;

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 37 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● wielkość dotychczasowego systemu;

● wielkość wprowadzonej zmiany.

Zdarzenia wywołujące pielęgnację i testowanie pielęgnacyjne można podzielić na następujące kategorie:

● Modyfikacje. Ta kategoria obejmuje między innymi zaplanowane udoskonalenia (wprowadzane

w postaci nowych wersji oprogramowania), zmiany korekcyjne i poprawki doraźne.

● Uaktualnienia lub migracje środowiska produkcyjnego. Ta kategoria obejmuje między innymi

przejście z jednej platformy na inną, co może wiązać się z koniecznością przeprowadzenia testów

związanych z nowym środowiskiem i zmienionym oprogramowaniem bądź testów konwersji

danych (w przypadku migracji danych z innej aplikacji do pielęgnowanego systemu).

● Wycofanie. Ta kategoria dotyczy sytuacji, w której okres użytkowania aplikacji dobiega końca.

W przypadku wycofywania systemu może być konieczne przetestowanie archiwizacji danych, jeśli

zachodzi potrzeba ich przechowywania przez dłuższy czas. Ponadto jeśli w okresie archiwizacji

będzie wymagany dostęp do niektórych danych, może być konieczne przetestowanie procedur

przywracania i odtwarzania danych po archiwizacji.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 38 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

3. Testowanie statyczne — 80 minut

Słowa kluczowe

analiza statyczna, anomalia, inspekcja, przegląd, przegląd formalny, przegląd nieformalny, przegląd
techniczny, przejrzenie, testowanie dynamiczne, testowanie statyczne

Cele nauczania w rozdziale 3:

3.1 Podstawy testowania statycznego

FL-3.1.1 (K1) Kandydat rozpoznaje typy produktów pracy, które mogą być badane przy użyciu technik
testowania statycznego.

FL-3.1.2 (K2) Kandydat wyjaśnia korzyści wynikające z testowania statycznego.

FL-3.1.3 (K2) Kandydat porównuje i zestawia ze sobą testowanie statyczne i testowanie dynamiczne.

3.2 Informacje zwrotne i proces przeglądu

FL-3.2.1 (K1) Kandydat pamięta korzyści wynikające z wczesnego i częstego otrzymywania informacji
zwrotnych od interesariuszy.

FL-3.2.2 (K2) Kandydat podsumowuje czynności wykonywane w ramach procesu przeglądu.

FL-3.2.3 (K1) Kandydat pamięta, jakie obowiązki są przypisane do najważniejszych ról w trakcie
wykonywania przeglądów.

FL-3.2.4 (K2) Kandydat porównuje i zestawia ze sobą różne typy przeglądów.

FL-3.2.5 (K1) Kandydat pamięta, jakie czynniki decydują o powodzeniu przeglądu.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 39 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

3.1. Podstawy testowania statycznego

W przeciwieństwie do testowania dynamicznego testowanie statyczne nie wymaga uruchamiania
testowanego oprogramowania. W testowaniu statycznym oceny kodu, specyfikacji procesów, specyfikacji
architektury systemu i innych produktów pracy dokonuje się poprzez ich manualne zbadanie (np. w ramach
przeglądu) lub poprzez zastosowanie odpowiedniego narzędzia (np. w ramach analizy statycznej). Wśród
celów testowania statycznego można wymienić podnoszenie jakości, wykrywanie defektów oraz ocenianie
charakterystyk takich jak czytelność, kompletność, poprawność, testowalność czy spójność. Testowanie
statyczne można stosować zarówno w przypadku weryfikacji, jak i w przypadku walidacji.

Testerzy, przedstawiciele jednostek biznesowych (właściciele produktu, analitycy biznesowi, itp.)
i programiści współpracują ze sobą podczas sesji mapowania przykładów (ang. example mapping),
wspólnego pisania historyjek użytkownika i doprecyzowywania backlogu (ang. backlog refinement
sessions), dbając o to, aby historyjki użytkownika i związane z nimi produkty pracy były zgodne
z określonymi kryteriami — na przykład z definicją gotowości (ang. Definition of Ready, patrz sekcja 5.1.3).
Mogą oni przy tym korzystać z technik przeglądu, aby zyskać pewność, że tworzone historyjki użytkownika
są kompletne i zrozumiałe oraz zawierają testowalne kryteria akceptacji. Zadając właściwe pytania,
testerzy mogą również badać, kwestionować i udoskonalać proponowane historyjki użytkownika.

Analiza statyczna pozwala rozpoznać problemy przed rozpoczęciem testowania dynamicznego, a przy tym
jest często mniej pracochłonna, ponieważ nie wymaga tworzenia przypadków testowych i odbywa się
zwykle z wykorzystaniem narzędzi (patrz rozdział 6). Często jest też elementem mechanizmów ciągłej
integracji (patrz sekcja 2.1.4). Chociaż głównym zastosowaniem analizy statycznej jest wykrywanie
konkretnych defektów kodu, metoda ta może również służyć do oceny utrzymywalności i poziomu
zabezpieczenia systemu. Przykładami narzędzi do analizy statycznej są również narzędzia do sprawdzania
pisowni i czytelności.

3.1.1. Produkty pracy badane metodą testowania statycznego

Przy użyciu technik testowania statycznego można zbadać niemal wszystkie produkty pracy, na przykład:
dokumenty zawierające specyfikacje wymagań, kod źródłowy, plany testów, przypadki testowe, pozycje
backlogu (ang. product backlog items), karty opisu testów, dokumentację projektu, umowy oraz modele.

Należy jednak pamiętać, że o ile przedmiotem przeglądu może być dowolny produkt pracy, który da się
przeczytać i zrozumieć, o tyle w przypadku analizy statycznej niezbędna jest struktura (np. modele, kod lub
tekst z formalną składnią), względem której można sprawdzić badane produkty pracy.

Do produktów pracy, które nie nadają się do objęcia testowaniem statycznym, należą między innymi
produkty trudne do zinterpretowania przez człowieka oraz produkty, których nie należy analizować za
pomocą narzędzi (np. kod wykonywalny innych firm, którego nie wolno badać ze względów prawnych).

3.1.2. Korzyści wynikające z testowania statycznego

Testowanie statyczne pozwala wykryć defekty w najwcześniejszych fazach cyklu wytwarzania
oprogramowania, a tym samym realizuje zasadę wczesnego testowania (patrz podrozdział 1.3). Ponadto
metoda ta umożliwia identyfikowanie defektów, których nie da się wykryć podczas testowania
dynamicznego — takich jak nieosiągalny kod, niewłaściwie zaimplementowane wzorce projektowe czy
defekty w niewykonywalnych produktach pracy.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 40 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Testowanie statyczne umożliwia dokonywanie oceny jakości produktów pracy i budowanie zaufania do
nich. Weryfikując udokumentowane wymagania, interesariusze mogą upewnić się, że opisują one ich
rzeczywiste potrzeby. Ponadto — z uwagi na fakt, że testowanie statyczne można wykonywać we
wczesnych fazach cyklu wytwarzania oprogramowania — zaangażowani w ten proces interesariusze mogą
wypracować wspólny punkt widzenia. Inną ważną korzyścią jest usprawnienie wymiany informacji
pomiędzy interesariuszami. Z tego powodu zaleca się, aby w proces testowania statycznego
zaangażowane było możliwie szerokie grono zainteresowanych osób.

Chociaż przeprowadzanie przeglądów może być kosztowne, łączne koszty projektu są zwykle dużo niższe
niż w przypadku rezygnacji z tego procesu, ponieważ dzięki przeglądom zmniejsza się czasochłonność
i pracochłonność usuwania defektów na późniejszych etapach projektu.

Analiza statyczna pozwala wykrywać określone defekty kodu bardziej efektywnie niż testowanie
dynamiczne, co przekłada się zwykle na zmniejszenie liczby tego rodzaju defektów oraz obniżenie łącznych
nakładów pracy związanych z wytwarzaniem oprogramowania.

3.1.3. Różnice między testowaniem statycznym a dynamicznym

Testowanie statyczne i testowanie dynamiczne wzajemnie się uzupełniają. Techniki te mają podobne cele,
takie jak wspomaganie wykrywania defektów w produktach pracy (patrz sekcja 1.1.1), ale różnią się pod
pewnymi względami, które opisano poniżej.

● Zarówno testowanie statyczne, jak i testowanie dynamiczne (z analizą awarii) może prowadzić do

wykrycia defektów, jednak istnieją pewne rodzaje defektów, które można wykryć tylko jedną

z powyższych metod.

● Testowanie statyczne umożliwia bezpośrednie wykrywanie defektów, natomiast testowanie

dynamiczne powoduje występowanie awarii, które są następnie analizowane w celu

zidentyfikowania związanych z nimi defektów.

● Testowanie statyczne pozwala łatwiej wykryć defekty, które znajdują się na rzadko wykonywanych

ścieżkach w kodzie lub w miejscach trudno dostępnych podczas testowania dynamicznego.

● Testowanie statyczne można stosować do niewykonywalnych produktów pracy, a testowanie

dynamiczne — tylko do produktów pracy wykonywalnych.

● Testowanie statyczne może służyć do mierzenia charakterystyk jakościowych, które nie są zależne

od wykonywania kodu (takich jak utrzymywalność), a testowanie dynamiczne — do mierzenia

charakterystyk jakościowych zależnych od wykonywania kodu (takich jak wydajność).

Przykładami typowych defektów, które są łatwiejsze i/lub tańsze do wykrycia przy zastosowaniu metody
testowania statycznego, są między innymi:

● defekty w wymaganiach (np. niespójności, niejednoznaczności, sprzeczności, przeoczenia,

nieścisłości czy powtórzenia);

● defekty w projekcie (np. nieefektywne struktury baz danych bądź niewłaściwa modularyzacja);

● niektóre typy defektów w kodzie (np. zmienne z niezdefiniowanymi wartościami, niezadeklarowane

zmienne, nieosiągalny lub wielokrotnie powtórzony kod bądź kod o nadmiernej złożoności);

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 41 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● odchylenia od standardów (np. brak zgodności z konwencjami nazewnictwa określonymi

w standardach tworzenia kodu);

● niepoprawne specyfikacje interfejsów (np. niezgodność liczby, typu lub kolejności parametrów);

● określone rodzaje słabych punktów zabezpieczeń (np. podatność na przepełnienie bufora);

● luki lub nieścisłości w pokryciu podstawy testów (np. brak testów odpowiadających kryteriom

akceptacji).

3.2. Informacje zwrotne i proces przeglądu

3.2.1. Korzyści wynikające z wczesnego i częstego otrzymywania informacji
zwrotnych od interesariuszy

Przekazywane w odpowiednim czasie i z odpowiednią częstotliwością informacje zwrotne umożliwiają
wczesne rozpoznawanie i sygnalizowanie potencjalnych problemów z jakością. Jeśli zaangażowanie
interesariuszy w trakcie cyklu wytwarzania oprogramowania jest niewielkie, wytwarzany produkt może
okazać się niezgodny z ich pierwotną lub obecną wizją. Niespełnienie oczekiwań interesariuszy może mieć
poważne konsekwencje, takie jak konieczność wprowadzenia kosztownych poprawek, niedotrzymanie
terminów, przerzucanie się odpowiedzialnością, a nawet niepowodzenie całego projektu.

Częste przekazywanie przez interesariuszy informacji zwrotnych we wszystkich fazach cyklu wytwarzania
oprogramowania pozwala zapobiec ewentualnym nieporozumieniom w kwestii wymagań, a także
umożliwia szybsze analizowanie i wprowadzanie ewentualnych zmian. Dzięki temu zespół tworzący
oprogramowanie dysponuje lepszą wiedzą na temat budowanego systemu, przez co może skoncentrować
się na działaniach, które przynoszą interesariuszom największe korzyści i pozwalają najskuteczniej
łagodzić zidentyfikowane ryzyka.

3.2.2. Czynności wykonywane w procesie przeglądu

W standardzie ISO/IEC 20246 zdefiniowano ogólny proces przeglądu, który wyznacza usystematyzowane,
a zarazem elastyczne ramy będące podstawą do wypracowania szczegółowego procesu dostosowanego
do konkretnej sytuacji. Jeśli wymagany przegląd ma charakter bardziej formalny, konieczne jest wykonanie
większej liczby zadań opisanych w kontekście poszczególnych czynności.

Wiele produktów pracy ma zbyt duże rozmiary, aby można je było objąć pojedynczym przeglądem. W takiej
sytuacji w celu przeanalizowania całego produktu pracy proces przeglądu można przeprowadzić
wielokrotnie.

W procesie przeglądu można wyróżnić następujące czynności:

● Planowanie. W fazie planowania określa się zakres przeglądu, w tym cel przeglądu, produkt pracy

będący jego przedmiotem, oceniane charakterystyki jakościowe, obszary wymagające szczególnej

uwagi, kryteria wyjścia, informacje pomocnicze (takie jak standardy), nakład pracy oraz ramy

czasowe.

● Rozpoczęcie przeglądu. Na etapie rozpoczęcia przeglądu należy upewnić się, że wszystkie
zaangażowane osoby i wszystkie niezbędne elementy są gotowe do jego wykonania. Należy
między innymi sprawdzić, czy każdy uczestnik ma dostęp do produktu pracy będącego

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 42 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

przedmiotem przeglądu, zna swoją rolę i swoje obowiązki oraz otrzymał wszystkie materiały
niezbędne do przeprowadzenia przeglądu.

● Przegląd indywidualny. Każdy przeglądający dokonuje przeglądu indywidualnego, aby ocenić
jakość produktu pracy będącego przedmiotem przeglądu oraz zidentyfikować ewentualne
anomalie, zalecenia i pytania, korzystając w tym celu z jednej lub kilku technik przeglądu (takich
jak przegląd oparty na liście kontrolnej czy przegląd oparty na scenariuszach). Dokładniejsze
informacje na temat poszczególnych technik przeglądu zawiera standard ISO/IEC 20246.
Przeglądający odnotowują wszystkie zidentyfikowane przez siebie anomalie, zalecenia i pytania.

● Przekazanie informacji i analiza. Z uwagi na to, że anomalie zidentyfikowane w trakcie przeglądu
nie muszą być defektami, konieczne jest przeanalizowanie i omówienie każdej z nich, a następnie
określenie jej statusu, wyznaczenie osoby odpowiedzialnej i wskazanie wymaganych działań.
Zwykle odbywa się to w ramach spotkania związanego z przeglądem, podczas którego uczestnicy
podejmują również decyzję co do poziomu jakości produktu pracy będącego przedmiotem
przeglądu oraz wymaganych dalszych działań. Może się również okazać, że zakończenie
podjętych działań będzie wymagało zorganizowania kolejnego przeglądu.

● Usunięcie defektów i raportowanie. W odniesieniu do każdego defektu należy sporządzić raport
o defekcie, aby umożliwić zweryfikowanie wykonania działań naprawczych. Po spełnieniu kryteriów
wyjścia można dokonać odbioru produktu pracy. Wyniki przeglądu należy ująć w raporcie.

3.2.3. Role i obowiązki w przeglądach

W przeglądach uczestniczą różni interesariusze, którzy mogą pełnić kilka ról. Poniżej omówiono
najważniejsze role i związane z nimi odpowiedzialności:

● Kierownik — decyduje o tym, co ma być przedmiotem przeglądu, a także udostępnia niezbędne

zasoby — w tym wyznacza pracowników oraz określa ramy czasowe przeglądu.

● Autor — tworzy produkt pracy będący przedmiotem przeglądu i usuwa występujące w nim defekty.

● Moderator (zwany także facylitatorem) — dba o sprawny przebieg spotkań związanych

z przeglądem. Występuje w roli mediatora, zarządza czasem oraz zapewnia bezpieczne warunki,

w których każdy uczestnik przeglądu może swobodnie wyrażać swoje zdanie.

● Protokolant (zwany także rejestrującym) — gromadzi informacje o anomaliach przekazane przez

przeglądających takie jak decyzje i nowe anomalie znalezione podczas spotkania przeglądowego

i protokołuje informacje związane z przeglądem, w tym informacje o podjętych decyzjach oraz

o nowych anomaliach stwierdzonych w trakcie spotkania związanego z przeglądem.

● Przeglądający — wykonuje przegląd. Rolę tę może pełnić osoba pracująca przy projekcie, ekspert

merytoryczny lub dowolny inny interesariusz.

● Lider przeglądu — ponosi ogólną odpowiedzialność za przegląd, w tym decyduje o tym, kto ma

wziąć udział w przeglądzie, oraz określa miejsce i termin przeglądu.

Oprócz ról opisanych powyżej mogą również występować bardziej szczegółowe role opisane w standardzie
ISO/IEC 20246.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 43 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

3.2.4. Typy przeglądów

Istnieje wiele typów przeglądów — od nieformalnych po formalne. Wymagany stopień sformalizowania
przeglądu zależy od takich czynników jak: przyjęty model cyklu wytwarzania oprogramowania, dojrzałość
procesu wytwarzania oprogramowania, krytyczność i złożoność produktu pracy będącego przedmiotem
przeglądu, wymogi prawne czy konieczność prowadzenia ścieżki audytu. Ten sam produkt pracy może być
objęty różnymi typami przeglądów, na przykład najpierw przeglądem nieformalnym, a następnie
przeglądem bardziej sformalizowanym.

Wybór właściwego typu przeglądu ma zasadnicze znaczenie dla osiągnięcia wymaganych celów przeglądu
(patrz sekcja 3.2.5). Wyboru tego dokonuje się nie tylko na podstawie celów, ale również na podstawie
czynników takich jak: potrzeby projektu, dostępne zasoby, typ produktu pracy i związane z nim ryzyka,
dziedzina biznesowa oraz kultura organizacyjna firmy.

Poniżej omówiono kilka często stosowanych typów przeglądów:

● Przegląd nieformalny. Przeglądy nieformalne nie przebiegają zgodnie ze zdefiniowanym
procesem, a uzyskanych dzięki nim informacji nie trzeba formalnie dokumentować. Głównym
celem jest wykrycie anomalii.

● Przejrzenie. Przejrzenie, które prowadzi autor, może służyć wielu celom, takim jak: dokonanie
oceny jakości produktu pracy i zwiększenie zaufania do niego, edukowanie przeglądających,
osiągnięcie konsensusu, wygenerowanie nowych pomysłów, zmotywowanie autorów do
udoskonalania przyszłych produktów pracy i stworzenie im warunków do tego oraz wykrycie
anomalii. Przed rozpoczęciem przejrzenia przeglądający mogą przeprowadzić przegląd
indywidualny, ale nie jest to konieczne.

● Przegląd techniczny. Przegląd techniczny wykonują przeglądający, którzy dysponują
odpowiednimi kwalifikacjami technicznymi, a nad przebiegiem procesu czuwa moderator. Celem
przeglądu technicznego jest nie tylko osiągnięcie konsensusu i podjęcie decyzji w sprawie
problemu technicznego, ale również wykrycie anomalii, dokonanie oceny jakości produktu pracy
i zwiększenie zaufania do niego, wygenerowanie nowych pomysłów oraz zmotywowanie autorów
do wprowadzania udoskonaleń i stworzenie im warunków do tego.

● Inspekcja. Inspekcja jest najbardziej formalnym typem przeglądu, w związku z czym odbywa się
zgodnie z pełnym ogólnym procesem przeglądu (patrz sekcja 3.2.2). Głównym celem jest wykrycie
jak największej liczby anomalii, a pozostałe cele to: dokonanie oceny jakości produktu pracy
i zwiększenie zaufania do niego oraz zmotywowanie autorów do wprowadzania udoskonaleń
i stworzenie im warunków do tego. Zbierane są metryki wykorzystywane następnie do
udoskonalania cyklu wytwarzania oprogramowania (w tym procesu inspekcji). W ramach inspekcji
autor nie może być liderem przeglądu ani protokolantem.

3.2.5. Czynniki powodzenia związane z przeglądami

Można wyróżnić kilka czynników, które decydują o pomyślnym przebiegu przeglądu, w tym:

● określenie jednoznacznych celów i mierzalnych kryteriów wyjścia (przy czym celem nie powinna

być w żadnym razie ocena uczestników);

● wybór odpowiedniego typu przeglądu, który pozwoli osiągnąć zakładane cele oraz będzie

odpowiedni do typu produktu pracy, uczestników przeglądu, potrzeb projektu i kontekstu;

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 44 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● przeprowadzanie przeglądów w odniesieniu do mniejszych partii materiału, tak aby przeglądający

nie tracili koncentracji podczas przeglądu indywidualnego i/lub spotkania związanego

z przeglądem (jeśli jest organizowane);

● przekazywanie informacji zwrotnych z przeglądów interesariuszom i autorom, tak aby mogli oni

udoskonalać produkt i usprawniać swoje działania (patrz sekcja 3.2.1);

● wyznaczenie uczestnikom wystarczającej ilości czasu na przygotowanie się do przeglądu;

● uzyskanie wsparcia kierownictwa dla procesu przeglądu;

● włączenie przeglądów w kulturę organizacyjną w celu stworzenia atmosfery sprzyjającej

poszerzaniu wiedzy i doskonaleniu procesów;

● zapewnienie wszystkim uczestnikom należytego przeszkolenia niezbędnego do prawidłowego

wykonywania wyznaczonych im ról;

● dbanie o sprawny przebieg spotkań.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 45 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

4. Analiza i projektowanie testów — 390 minut

Słowa kluczowe

analiza wartości brzegowych, białoskrzynkowa technika testowania, czarnoskrzynkowa technika
testowania, element pokrycia, kryteria akceptacji, podejście do testowania oparte na współpracy, podział
na klasy równoważności, pokrycie, pokrycie gałęzi, pokrycie instrukcji kodu, technika testowania oparta na
doświadczeniu, technika testowania, testowanie eksploracyjne, testowanie przejść pomiędzy stanami,
testowanie w oparciu o tablicę decyzyjną, testowanie w oparciu o listę kontrolną, wytwarzanie sterowane
testami akceptacyjnymi, zgadywanie błędów

Cele nauczania w rozdziale 4:

4.1 Ogólna charakterystyka technik testowania

FL-4.1.1 (K2) Kandydat rozróżnia czarnoskrzynkowe techniki testowania, białoskrzynkowe techniki
testowania oraz techniki testowania oparte na doświadczeniu.

4.2 Czarnoskrzynkowe techniki testowania

FL-4.2.1 (K3) Kandydat używa techniki podziału na klasy równoważności, aby zaprojektować przypadki
testowe.

FL-4.2.2 (K3) Kandydat używa techniki analizy wartości brzegowych, aby zaprojektować przypadki
testowe.

FL-4.2.3 (K3) Kandydat używa techniki testowania w oparciu o tablicę decyzyjną, aby zaprojektować
przypadki testowe.

FL-4.2.4 (K3) Kandydat używa techniki testowania przejść pomiędzy stanami, aby zaprojektować
przypadki testowe.

4.3 Białoskrzynkowe techniki testowania

FL-4.3.1 (K2) Kandydat wyjaśnia pojęcie testowanie instrukcji.

FL-4.3.2 (K2) Kandydat wyjaśnia pojęcie testowanie gałęzi.

FL-4.3.3 (K2) Kandydat wyjaśnia korzyści wynikające z testowania białoskrzynkowego.

4.4 Techniki testowania oparte na doświadczeniu

FL-4.4.1 (K2) Kandydat wyjaśnia pojęcie zgadywanie błędów.

FL-4.4.2 (K2) Kandydat wyjaśnia pojęcie testowanie eksploracyjne.

FL-4.4.3 (K2) Kandydat wyjaśnia pojęcie testowanie w oparciu o listę kontrolną.

4.5 Podejścia do testowania oparte na współpracy

FL-4.5.1 (K2) Kandydat wyjaśnia, w jaki sposób należy pisać historyjki użytkownika we współpracy
z programistami i przedstawicielami jednostek biznesowych.

FL-4.5.2 (K2) Kandydat klasyfikuje różne sposoby pisania kryteriów akceptacji.

FL-4.5.3 (K3) Kandydat używa metody wytwarzania sterowanego testami akceptacyjnymi (ATDD), aby
zaprojektować przypadki testowe.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 46 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

4.1. Ogólna charakterystyka technik testowania

Techniki testowania pomagają testerom w przeprowadzaniu analizy testów (która odpowiada na pytanie
„co należy przetestować”) oraz w projektowaniu testów (które odpowiada na pytanie „jak należy testować”).
Za pomocą tego typu technik można systematycznie opracować stosunkowo niewielki, ale wystarczający
zbiór przypadków testowych. Ponadto techniki testowania ułatwiają definiowanie warunków testowych oraz
identyfikowanie elementów pokrycia i danych testowych na etapie analizy i projektowania testów. Więcej
informacji na temat technik testowania i odpowiadających im miar można znaleźć w standardzie
ISO/IEC/IEEE 29119-4 oraz w (Beizer 1990, Craig 2002, Copeland 2004, Koomen 2006, Jorgensen 2014,
Ammann 2016, Forgács 2019).

W niniejszym sylabusie techniki testowania podzielono na czarnoskrzynkowe, białoskrzynkowe i oparte na
doświadczeniu.

Czarnoskrzynkowe techniki testowania (zwane także technikami opartymi na specyfikacji) bazują na
analizie wyspecyfikowanego zachowania przedmiotu testów bez odwoływania się do jego struktury
wewnętrznej. Oznacza to, że przypadki testowe są niezależne od sposobu implementacji oprogramowania,
a co za tym idzie mogą być nadal stosowane w przypadku zmiany implementacji, która nie pociąga za sobą
zmiany wymaganego zachowania.

Podstawą białoskrzynkowych technik testowania (zwanych także technikami opartymi na strukturze)
jest analiza struktury wewnętrznej przedmiotu testów i wykonywanego w nim przetwarzania. Przypadki
testowe są uzależnione od sposobu, w jaki zaprojektowano dane oprogramowanie, w związku z czym
można je tworzyć dopiero po zaprojektowaniu lub zaimplementowaniu przedmiotu testów.

Techniki testowania oparte na doświadczeniu pozwalają wykorzystać wiedzę i doświadczenie testerów
do projektowania i implementowania przypadków testowych. Skuteczność tego rodzaju technik zależy
w dużej mierze od umiejętności testera. Techniki oparte na doświadczeniu pozwalają wykrywać defekty,
które łatwo jest przeoczyć w przypadku stosowania technik czarnoskrzynkowych i białoskrzynkowych,
a tym samym znakomicie uzupełniają powyższe techniki.

4.2. Czarnoskrzynkowe techniki testowania

W kolejnych sekcjach omówione zostały następujące powszechnie stosowane czarnoskrzynkowe techniki
testowania:

● podział na klasy równoważności;

● analiza wartości brzegowych;

● testowanie w oparciu o tablicę decyzyjną;

● testowanie przejść pomiędzy stanami.

4.2.1. Podział na klasy równoważności

Technika podziału na klasy równoważności polega na dzieleniu danych na klasy (zwane klasami
równoważności) zgodnie z założeniem, że każda klasa będzie zawierała elementy, które mają być
przetwarzane przez przedmiot testów w ten sam sposób. U podstaw tej techniki leży teoria, zgodnie z którą
jeśli przypadek testowy służący do testowania jednej wartości z klasy równoważności wykryje defekt, to
defekt ten powinien również zostać wykryty przez przypadki testowe służące do testowania każdej innej

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 47 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

wartości należącej do tej samej klasy. Oznacza to, że wystarczające jest utworzenie jednego testu
w odniesieniu do każdej z klas.

Klasy równoważności można wyznaczać w odniesieniu do wszelkich elementów danych, które są związane
z przedmiotem testów, takich jak: dane wejściowe, dane wyjściowe, elementy konfiguracji, wartości
wewnętrzne, wartości zależne od czasu oraz parametry interfejsu. Klasy mogą być ciągłe lub dyskretne,
uporządkowane lub nieuporządkowane oraz skończone lub nieskończone, nie mogą natomiast nakładać
się na siebie ani być pustymi zbiorami.

W przypadku prostych elementów testowych podział na klasy równoważności nie sprawia zwykle trudności,
ale w praktyce zrozumienie tego, jak dany obiekt testowy będzie traktować poszczególne wartości, bywa
skomplikowane. Z tego powodu przy dokonywaniu podziału należy zachować ostrożność.

Klasa równoważności zawierająca poprawne wartości jest nazywana poprawną klasą równoważności,
a klasa zawierająca wartości niepoprawne — niepoprawną klasą równoważności. Definicje wartości
poprawnych i niepoprawnych mogą przy tym różnić się w zależności od zespołu lub organizacji. Za wartości
poprawne mogą być na przykład uważane takie, które powinny być przetwarzane przez przedmiot testów,
lub takie, w przypadku których sposób przetwarzania określa specyfikacja. Z kolei za wartości niepoprawne
mogą być uznawane wartości, które przedmiot testów powinien zignorować lub odrzucić, bądź wartości,
w odniesieniu do których w specyfikacji przedmiotu testów nie zdefiniowano sposobu przetwarzania.

W przypadku podziału na klasy równoważności elementami pokrycia są klasy równoważności. Warunkiem
uzyskania stuprocentowego pokrycia przy korzystaniu z tej techniki jest sprawdzenie za pomocą
przypadków testowych wszystkich zidentyfikowanych klas (w tym klas niepoprawnych) poprzez pokrycie
każdej klasy co najmniej raz. Pokrycie mierzy się jako iloraz liczby klas sprawdzonych za pomocą co
najmniej jednego przypadku testowego przez łączną liczbę zidentyfikowanych klas, a uzyskaną wartość
wyraża się w procentach.

W wielu elementach testowych występuje po kilka zbiorów klas (przykładem mogą być elementy testowe
mające więcej niż jeden parametr wejściowy), co oznacza, że przypadek testowy będzie pokrywać klasy
należące do kilku różnych zbiorów. Najprostszym kryterium pokrycia w przypadku występowania wielu
zbiorów klas jest pokrycie typu „każdy wybór” (ang. each choice) (Ammann 2016). Wymaga ono, aby
przypadki testowe sprawdzały każdą klasę z każdego zbioru klas co najmniej raz. Pokrycie to nie
uwzględnia kombinacji klas.

4.2.2. Analiza wartości brzegowych

Technika analizy wartości brzegowych polega na sprawdzaniu wartości brzegowych klas równoważności,
w związku z czym może być stosowana tylko w odniesieniu do klas uporządkowanych. Wartościami
brzegowymi klasy równoważności są jej wartość minimalna i maksymalna. W przypadku analizy wartości
brzegowych zakłada się, że jeśli dwa elementy należą do tej samej klasy, to wszystkie elementy leżące
pomiędzy nimi również muszą należeć do tej klasy.

Opisywana technika skupia się na wartościach brzegowych klas ze względu na większe
prawdopodobieństwo popełnienia przez programistów pomyłek właśnie w przypadku takich wartości.
Typowe defekty wykrywane metodą analizy wartości brzegowych znajdują się tam, gdzie
zaimplementowane wartości brzegowe zostały omyłkowo umieszczone powyżej lub poniżej zamierzonego
położenia lub całkowicie pominięte.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 48 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

W niniejszym sylabusie omówiono dwa warianty analizy wartości brzegowych: analizę dwupunktową
i analizę trójpunktową. Warianty te różnią się liczbą elementów pokrycia przypadających na każdą
z wartości brzegowych, które muszą zostać sprawdzone w celu uzyskania stuprocentowego pokrycia.

W przypadku dwupunktowej analizy wartości brzegowych (Craig 2002, Myers 2011) na każdą wartość
brzegową przypadają dwa elementy pokrycia: sama wartość brzegowa oraz najbliższa jej wartość należąca
do sąsiedniej klasy równoważności. Warunkiem uzyskania stuprocentowego pokrycia przy korzystaniu
z dwupunktowej analizy wartości brzegowych jest sprawdzenie za pomocą przypadków testowych
wszystkich elementów pokrycia, czyli wszystkich zidentyfikowanych wartości brzegowych. Pokrycie mierzy
się jako iloraz liczby sprawdzonych wartości brzegowych przez łączną liczbę zidentyfikowanych wartości
brzegowych, a uzyskaną wartość wyraża się w procentach.

W przypadku trójpunktowej analizy wartości brzegowych (Koomen 2006, O’Regan 2019) na każdą wartość
brzegową przypadają trzy elementy pokrycia: sama wartość brzegowa oraz obie wartości sąsiednie.
W związku z tym w ramach trójpunktowej analizy wartości brzegowych niektóre elementy pokrycia mogą
nie być wartościami brzegowymi. Warunkiem uzyskania stuprocentowego pokrycia przy korzystaniu
z trójpunktowej analizy wartości brzegowych jest sprawdzenie za pomocą przypadków testowych
wszystkich elementów pokrycia, czyli zidentyfikowanych wartości brzegowych i ich wartości sąsiednich.
Pokrycie mierzy się jako iloraz liczby sprawdzonych wartości brzegowych i wartości sąsiednich przez
łączną liczbę zidentyfikowanych wartości brzegowych i ich wartości sąsiednich, a uzyskaną wartość wyraża
się w procentach.

Trójpunktowa analiza wartości brzegowych jest bardziej rygorystyczna niż analiza dwupunktowa, ponieważ
pozwala wykryć defekty, które można przeoczyć w przypadku tej ostatniej. Na przykład jeśli decyzja „if (x
≤ 10) …” zostanie błędnie zaimplementowana jako „if (x = 10) …”, dane testowe uzyskane w ramach
dwupunktowej analizy wartości brzegowych (x = 10, x = 11) mogą nie pozwolić na wykrycie defektu. Jeśli
natomiast zostanie zastosowana wartość x = 9 uzyskana w wyniku analizy trójpunktowej, defekt
prawdopodobnie zostanie wykryty.

4.2.3. Testowanie w oparciu o tablicę decyzyjną

Tablice decyzyjne służą do testowania implementacji wymagań systemowych, które określają, w jaki
sposób różne kombinacje warunków powodują uzyskanie różnych wyników. Za pomocą tablic decyzyjnych
można sprawnie odzwierciedlać złożone mechanizmy logiczne, takie jak reguły biznesowe.

Przy opracowywaniu tablic decyzyjnych określa się warunki i wynikające z nich akcje systemu, które tworzą
wiersze tablicy. Każda kolumna odpowiada regule decyzyjnej, która określa unikatową kombinację
warunków wraz z powiązanymi akcjami. W ograniczonych tablicach decyzyjnych wszystkie wartości
warunków i akcji (z wyjątkiem warunków nieistotnych lub niemożliwych do spełnienia; patrz poniżej)
przedstawia się jako wartości logiczne (prawda/fałsz). Alternatywą dla powyższego wariantu są uogólnione
tablice decyzyjne, w których niektóre lub wszystkie warunki i akcje mogą również przyjmować wiele
wartości (takich jak przedziały liczb, klasy równoważności czy wartości dyskretne).

Notacja warunków jest następująca: „P” (prawda) oznacza, że warunek został spełniony, „F” (fałsz)
oznacza, że warunek nie został spełniony, „—” oznacza, że wartość warunku nie ma znaczenia dla wyniku
akcji, a „nd” („nie dotyczy”) oznacza, że warunek nie występuje w przypadku danej reguły. W przypadku
akcji „X” oznacza, że akcja powinna zostać wykonana, a puste pole — że nie powinna zostać wykonana.
Mogą być również stosowane inne notacje.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 49 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Pełna tablica decyzyjna zawiera tyle kolumn, ile jest niezbędne do pokrycia wszystkich kombinacji
warunków. Tablicę można uprościć poprzez usunięcie kolumn zawierających kombinacje warunków, które
są niemożliwe do spełnienia. Ponadto można ją zminimalizować poprzez scalenie kolumn, w których część
warunków nie ma wpływu na wynik, w jedną kolumnę. Należy jednak zaznaczyć, że algorytmy
minimalizowania tablic decyzyjnych nie są przedmiotem niniejszego sylabusa.

W przypadku testowania w oparciu o tablicę decyzyjną elementami pokrycia są kolumny zawierające
możliwe do spełnienia kombinacje warunków. Warunkiem uzyskania stuprocentowego pokrycia przy
korzystaniu z tej techniki jest sprawdzenie za pomocą przypadków testowych wszystkich powyższych
kolumn. Pokrycie mierzy się jako iloraz liczby sprawdzonych kolumn przez łączną liczbę kolumn
zawierających możliwe do spełnienia warunki, a uzyskana wartość jest wyrażona w procentach.

Zaletą testowania w oparciu o tablicę decyzyjną jest systematyczne podejście umożliwiające
zidentyfikowanie wszystkich kombinacji warunków, które w innym przypadku mogłyby zostać przeoczone.
Ponadto metoda ta pomaga znaleźć ewentualne luki lub sprzeczności w wymaganiach. Jeśli występuje
duża liczba warunków, sprawdzenie wszystkich reguł decyzyjnych może być czasochłonne, ponieważ
liczba reguł rośnie wykładniczo wraz z liczbą warunków. W takim przypadku w celu zmniejszenia liczby
reguł wymagających sprawdzenia można zminimalizować tablicę decyzyjną lub zastosować podejście
oparte na ryzyku.

4.2.4. Testowanie przejść pomiędzy stanami

Diagram stanów umożliwia modelowanie zachowania systemu poprzez zobrazowanie jego możliwych
stanów i poprawnych przejść między nimi. Przejście jest inicjowane przez zdarzenie, które może być
dodatkowo kwalifikowane przez warunek dozoru. Przyjmuje się, że przejścia są natychmiastowe i mogą
niekiedy powodować wykonanie przez oprogramowanie określonej akcji. Typowa notacja stosowana do
oznaczania przejść ma postać „zdarzenie [warunek dozoru] / akcja”, przy czym warunki dozoru i akcje
można pominąć, jeśli nie istnieją lub są nieistotne z punktu widzenia testera.

Tablica stanów jest modelem równoważnym diagramowi stanów. Jej wiersze odpowiadają stanom,
a kolumny — zdarzeniom (wraz z ewentualnymi warunkami dozoru). Wpisy w tabeli (komórki) odpowiadają
przejściom i zawierają informacje o stanie docelowym oraz o akcjach wynikających z przejść (jeśli zostały
zdefiniowane). W przeciwieństwie od diagramu stanów tablica stanów wyraźnie wskazuje niepoprawne
przejścia, którym odpowiadają puste komórki.

Przypadek testowy oparty na diagramie stanów lub tablicy stanów jest zwykle wyrażany w postaci
sekwencji zdarzeń, która powoduje wykonanie sekwencji zmian stanu (oraz akcji, jeśli są wymagane).
Jeden przypadek testowy może pokrywać (i zwykle pokrywa) kilka przejść pomiędzy stanami.

Istnieje wiele kryteriów pokrycia, które można wykorzystać w testowaniu przejść pomiędzy stanami.
W niniejszym sylabusie omówiono trzy z nich.

W przypadku pokrycia wszystkich stanów elementami pokrycia są właśnie stany. Warunkiem uzyskania
stuprocentowego pokrycia wszystkich stanów jest przejście za pomocą przypadków testowych przez
wszystkie istniejące stany. Pokrycie mierzy się jako iloraz liczby wykonanych stanów przez łączną liczbę
stanów, a uzyskana wartość jest wyrażona w procentach.

W przypadku pokrycia poprawnych przejść (zwanego także pokryciem 0-przełączeń) elementami
pokrycia są pojedyncze poprawne przejścia. Warunkiem uzyskania stuprocentowego pokrycia poprawnych
przejść jest wykonanie za pomocą przypadków testowych wszystkich poprawnych przejść. Pokrycie mierzy

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 50 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

się jako iloraz liczby wykonanych poprawnych przejść przez łączną liczbę poprawnych przejść, a uzyskana
wartość jest wyrażona w procentach.

W przypadku pokrycia wszystkich przejść elementami pokrycia są wszystkie przejścia wskazane
w tablicy stanów. Warunkiem uzyskania stuprocentowego pokrycia wszystkich przejść jest wykonanie za
pomocą przypadków testowych wszystkich poprawnych przejść oraz podjęcie próby wykonania
niepoprawnych przejść. Testowanie tylko jednego niepoprawnego przejścia w jednym przypadku testowym
pozwala uniknąć maskowania defektów, czyli sytuacji, w której jeden defekt uniemożliwia wykrycie innego
defektu. Pokrycie mierzy się jako iloraz liczby poprawnych i niepoprawnych przejść, które zostały wykonane
lub w przypadku których podjęto próbę wykonania za pomocą przypadków testowych przez łączną liczbę
poprawnych i niepoprawnych przejść, a uzyskana wartość jest wyrażona w procentach.

Pokrycie wszystkich stanów jest słabszym kryterium niż pokrycie poprawnych przejść, ponieważ można je
zwykle osiągnąć bez wykonania wszystkich przejść. Pokrycie poprawnych przejść jest najczęściej
stosowanym kryterium pokrycia. Uzyskanie pełnego pokrycia poprawnych przejść gwarantuje pełne
pokrycie wszystkich stanów, a uzyskanie pełnego pokrycia wszystkich przejść gwarantuje zarówno pełne
pokrycie wszystkich stanów, jak i pełne pokrycie poprawnych przejść, w związku z czym powinno być
wymogiem minimalnym w przypadku oprogramowania o newralgicznym znaczeniu dla działalności
przedsiębiorstwa, a także oprogramowania krytycznego ze względów bezpieczeństwa.

4.3. Białoskrzynkowe techniki testowania

Z uwagi na ich popularność i prostotę w niniejszym podrozdziale skupiono się na dwóch białoskrzynkowych
technikach testowania związanych z kodem. Są to:

● testowanie instrukcji;

● testowanie gałęzi.

Istnieją również bardziej rygorystyczne techniki, których używa się w systemach krytycznych ze względów
bezpieczeństwa, w systemach o newralgicznym znaczeniu dla działalności przedsiębiorstwa oraz
w środowiskach wymagających wysokiego poziomu integralności w celu uzyskania pełniejszego pokrycia
kodu. Istnieją także białoskrzynkowe techniki testowania używane na wyższych poziomach testów (np.
w ramach testowania API) lub korzystające z pokrycia niezwiązanego z kodem (np. pokrycia neuronów
w testowaniu sieci neuronowych). Nie są one jednak przedmiotem niniejszego sylabusa.

4.3.1. Testowanie instrukcji i pokrycie instrukcji kodu

W przypadku testowania instrukcji elementami pokrycia są instrukcje wykonywalne. Technika ta służy do
projektowania przypadków testowych, które sprawdzają instrukcje w kodzie do momentu osiągnięcia
akceptowalnego poziomu pokrycia. Pokrycie mierzy się jako iloraz liczby instrukcji sprawdzonych za
pomocą przypadków testowych przez łączną liczbę instrukcji wykonywalnych w kodzie, a uzyskana
wartość jest wyrażona w procentach.

Uzyskanie stuprocentowego pokrycia instrukcji kodu gwarantuje, że każda instrukcja wykonywalna została
sprawdzona co najmniej raz. Oznacza to w szczególności wykonanie każdej instrukcji zawierającej defekt,
co może spowodować awarię potwierdzającą istnienie defektu. Należy jednak zaznaczyć, że sprawdzenie
instrukcji za pomocą przypadku testowego nie zawsze powoduje wykrycie defektu — istnieje na przykład
ryzyko niewykrycia defektów, które są zależne od danych (takich jak dzielenie przez zero, które powoduje
awarię tylko w przypadku nadania mianownikowi wartości zerowej). Ponadto uzyskanie stuprocentowego

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 51 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

pokrycia instrukcji kodu nie gwarantuje, że została przetestowana cała logika decyzyjna, ponieważ testy
mogą na przykład nie sprawdzać wszystkich gałęzi kodu (patrz sekcja 4.3.2).

4.3.2. Testowanie gałęzi i pokrycie gałęzi

Gałąź reprezentuje przepływ sterowania między dwoma wierzchołkami w diagramie przepływu sterowania
przedstawiającym możliwe sekwencje wykonywania instrukcji kodu źródłowego w przedmiocie testów.
Każdy przepływ sterowania może odbywać się albo bezwarunkowo (kod liniowy), albo warunkowo (wynik
decyzji).

W przypadku testowania gałęzi elementami pokrycia są gałęzie, a celem jest zaprojektowanie przypadków
testowych sprawdzających gałęzie kodu do momentu osiągnięcia akceptowalnego poziomu pokrycia.
Pokrycie mierzy się jako iloraz liczby gałęzi sprawdzonych za pomocą co najmniej jednego przypadku
testowego przez łączną liczbę gałęzi, a uzyskana wartość jest wyrażona w procentach.

Uzyskanie stuprocentowego pokrycia gałęzi oznacza, że wszystkie gałęzie kodu — zarówno
bezwarunkowe, jak i warunkowe — zostały sprawdzone za pomocą przypadków testowych. Gałęzie
warunkowe zwykle odpowiadają wynikowi „prawda” lub „fałsz” decyzji „IF … THEN”, wynikowi instrukcji
SWITCH/CASE bądź decyzji o wyjściu z pętli lub dalszym wykonywaniu pętli. Należy jednak zaznaczyć, że
sprawdzenie gałęzi za pomocą przypadku testowego nie zawsze powoduje wykrycie defektu — istnieje na
przykład ryzyko niewykrycia defektów, które wymagają wykonania konkretnej ścieżki w kodzie.

Pokrycie gałęzi subsumuje pokrycie instrukcji kodu, co oznacza, że każdy zbiór przypadków testowych
osiągający stuprocentowe pokrycie gałęzi osiąga również stuprocentowe pokrycie instrukcji kodu (ale nie
odwrotnie).

4.3.3. Korzyści wynikające z testowania białoskrzynkowego

Zasadniczą zaletą wszystkich technik białoskrzynkowych jest fakt, że podczas testowania uwzględniana
jest cała implementacja oprogramowania, co ułatwia wykrywanie defektów nawet w przypadku, gdy
specyfikacja oprogramowania jest niejednoznaczna, nieaktualna lub niekompletna. Wadą jest z kolei fakt,
że w przypadku niezaimplementowania w oprogramowaniu jednego lub kilku wymagań testowanie
białoskrzynkowe może nie wykryć spowodowanych tym defektów w postaci pominięć (Watson 1996).

Techniki białoskrzynkowe mogą być stosowane w testowaniu statycznym (np. podczas próbnych
przebiegów kodu - ang. dry runs). Sprawdzają się również w przeglądach kodu, który nie jest jeszcze
gotowy do uruchomienia (Hetzel 1988), a także pseudokodu oraz mechanizmów logicznych, które można
odwzorować w postaci diagramu przepływu sterowania.

Wykonanie jedynie testowania czarnoskrzynkowego nie pozwala zmierzyć faktycznego pokrycia kodu,
natomiast miary pokrycia stosowane w technikach białoskrzynkowych zapewniają obiektywny pomiar
pokrycia i dostarczają niezbędnych informacji umożliwiających wygenerowanie dodatkowych testów w celu
jego zwiększenia, co ostatecznie przekłada się na wzrost zaufania do kodu.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 52 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

4.4. Techniki testowania oparte na doświadczeniu

W kolejnych sekcjach omówiono następujące powszechnie stosowane techniki testowania oparte na
doświadczeniu:

● zgadywanie błędów;

● testowanie eksploracyjne;

● testowanie w oparciu o listę kontrolną.

4.4.1. Zgadywanie błędów

Zgadywanie błędów to technika pozwalająca przewidywać wystąpienie błędów, defektów i awarii na
podstawie wiedzy testera dotyczącej między innymi:

● dotychczasowego działania aplikacji;

● typowych błędów popełnianych przez programistów i typów wynikających z nich defektów;

● rodzajów awarii, które wystąpiły w innych podobnych aplikacjach.

Zasadniczo błędy, defekty i awarie mogą być związane z: danymi wejściowymi (np. nieprzyjęcie
poprawnych danych wejściowych bądź błędne lub brakujące parametry), danymi wyjściowymi (np.
nieprawidłowy format lub nieprawidłowy rezultat), logiką (np. brakujące przypadki lub nieprawidłowy
operator), obliczeniami (np. niepoprawny argument operacji lub błędne obliczenie), interfejsami (np.
niezgodność parametrów lub typów) bądź danymi (np. niepoprawne zainicjowanie lub niewłaściwy typ
danych).

Przykładem metodycznego podejścia do zgadywania błędów są ataki usterek. Technika ta wymaga od
testera stworzenia lub uzyskania listy potencjalnych błędów, defektów i awarii, a następnie zaprojektowania
testów pozwalających zidentyfikować defekty związane z błędami z listy, uwidocznić defekty z listy bądź
spowodować awarie z listy. Listy takie można opracowywać na podstawie własnego doświadczenia,
danych dotyczących defektów i awarii oraz powszechnej wiedzy na temat przyczyn awarii
oprogramowania.

Więcej informacji na temat zgadywania błędów i ataków usterek zawierają pozycje (Whittaker 2002,
Whittaker 2003, Andrews 2006).

4.4.2. Testowanie eksploracyjne

Testowanie eksploracyjne polega na równoczesnym projektowaniu, wykonywaniu i dokonywaniu oceny

testów w czasie, gdy tester zapoznaje się z przedmiotem testów. Proces ten dostarcza wiedzy na temat

przedmiotu testów, a także pozwala tworzyć ukierunkowane testy umożliwiające jego dokładniejsze

zbadanie oraz testy dotyczące obszarów dotychczas nieprzetestowanych.

Testowanie eksploracyjne jest czasami przeprowadzane metodą tzw. testowania w sesjach, która pozwala
uporządkować cały proces. W ramach testowania w sesjach testowanie eksploracyjne odbywa się w ściśle
określonym przedziale czasu, a tester prowadzi testy zgodnie z kartą opisu testu (zawierającą cele testów).
Po zakończeniu sesji testowej zwykle odbywa się spotkanie podsumowujące, którego elementem jest
dyskusja między testerem a interesariuszami zainteresowanymi wynikami sesji testowej. W ramach tego
podejścia cele testów można potraktować jako warunki testowe wysokiego poziomu. W trakcie sesji

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 53 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

testowej identyfikuje się i sprawdza elementy pokrycia. Do dokumentowania wykonywanych kroków
testowych i uzyskiwanych informacji służą arkusze sesji testowych.

Testowanie eksploracyjne jest przydatne w przypadku niepełnych lub niewłaściwie sporządzonych
specyfikacji bądź w przypadku testowania pod presją czasu. Ponadto może być uzupełnieniem innych,
bardziej formalnych technik testowania. Wśród czynników zwiększających skuteczność testowania
eksploracyjnego można wymienić doświadczenie i wiedzę merytoryczną testera oraz wysoki poziom
niezbędnych umiejętności, takich jak umiejętność analizy, ciekawość i kreatywność (patrz sekcja 1.5.1).

W ramach testowania eksploracyjnego można korzystać także z innych technik (np. techniki podziału na
klasy równoważności). Więcej informacji na temat testowania eksploracyjnego można znaleźć w (Kaner
1999, Whittaker 2009, Hendrickson 2013).

4.4.3. Testowanie w oparciu o listę kontrolną

W ramach testowania w oparciu o listę kontrolną testerzy projektują, implementują i wykonują testy tak, aby
pokryć warunki testowe wymienione na liście kontrolnej. Listy kontrolne można opracowywać na podstawie
własnego doświadczenia, znajomości oczekiwań użytkowników lub wiedzy na temat przyczyn i objawów
awarii oprogramowania. Należy jednak pamiętać, że nie powinny one zawierać elementów, które można
sprawdzić automatycznie, które lepiej jest wykorzystać jako kryteria wejścia lub kryterium wyjścia lub które
są zbyt ogólne (Brykczynski 1999).

Elementy listy kontrolnej są często formułowane jako pytania, przy czym powinno być możliwe
bezpośrednie sprawdzenie każdego z nich z osobna. Elementy te mogą dotyczyć wymagań, właściwości
interfejsu graficznego, charakterystyk jakościowych lub innego rodzaju warunków testowych. Listy
kontrolne można tworzyć na potrzeby różnych typów testów, w tym na potrzeby testowania funkcjonalnego
i niefunkcjonalnego, czego przykładem jest 10 heurystyk w zakresie testowania użyteczności (Nielsen
1994).

Z czasem niektóre pozycje listy kontrolnej mogą stopniowo tracić skuteczność, ponieważ programiści uczą
się unikać popełniania tych samych pomyłek. Ponadto może być konieczne dodanie nowych pozycji
odzwierciedlających nowo wykryte defekty o dużej krytyczności. Z powyższych powodów listy kontrolne
powinny być regularnie aktualizowane na podstawie analizy defektów, jednak należy zachować ostrożność,
aby nie stały się one zbyt obszerne (Gawande 2009).

W sytuacji, w której brakuje szczegółowych przypadków testowych, testowanie w oparciu o listę kontrolną
zapewnia niezbędne wytyczne i pozwala uzyskać pewien stopień spójności testowania. Jeśli listy kontrolne
mają charakter wysokopoziomowy, podczas faktycznego testowania może występować pewna zmienność
przekładająca się na większe pokrycie, ale kosztem mniejszej powtarzalności.

4.5. Podejścia do testowania oparte na współpracy

Każda z wyżej wymienionych technik (patrz podrozdziały 4.2, 4.3 i 4.4) ma określony cel związany
z wykrywaniem defektów, natomiast podejścia oparte na współpracy koncentrują się również na unikaniu
defektów poprzez zapewnienie współpracy i wymiany informacji.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 54 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

4.5.1. Wspólne pisanie historyjek użytkownika

Historyjka użytkownika reprezentuje cechę systemu wartościową dla użytkownika bądź nabywcy systemu
lub oprogramowania. W historyjkach użytkownika wyróżnia się trzy kluczowe aspekty (Jeffries 2000)
nazywane łącznie „3 C” od pierwszych liter ich angielskich nazw. Są to:

● karta (ang. card), czyli nośnik zawierający opis historyjki użytkownika (np. karta katalogowa bądź
wpis w kartotece elektronicznej);

● rozmowa (ang. conversation), która wyjaśnia, w jaki sposób będzie używane oprogramowanie
(w postaci udokumentowanej lub słownej);

● potwierdzenie (ang. confirmation), czyli kryteria akceptacji (patrz sekcja 4.5.2).

Najczęściej stosowany format historyjki użytkownika ma postać zdania „Jako [rola] chcę [zakładany cel do
osiągnięcia], abym mógł/mogła [wartość biznesowa uzyskiwana w kontekście danej roli]”, po którym
następują kryteria akceptacji.

Podczas wspólnego tworzenia historyjki użytkownika można korzystać z technik takich jak burza mózgów
czy tworzenie map myśli. Dzięki współpracy zespół może wypracować wspólną wizję tego, co należy
dostarczyć, z uwzględnieniem trzech punktów widzenia: biznesowego, programistycznego i testowego.

Dobre historyjki użytkownika powinny być niezależne, negocjowalne, wartościowe, możliwe do
oszacowania, zwięzłe i testowalne (ang. Independent, Negotiable, Valuable, Estimable, Small, Testable —
INVEST). Jeśli interesariusz nie wie, jak należy przetestować daną historyjkę użytkownika, może to
wskazywać, że nie jest ona wystarczająco jednoznaczna lub nie odzwierciedla kwestii istotnych dla tego
interesariusza. Nie można też jednak wykluczyć, że interesariusz po prostu potrzebuje pomocy
w testowaniu (Wake 2003).

4.5.2. Kryteria akceptacji

Kryteria akceptacji związane z historyjką użytkownika to warunki, jakie muszą zostać spełnione, aby
implementacja tej historyjki została zaakceptowana przez interesariuszy. Z tej perspektywy kryteria
akceptacji można potraktować jako warunki testowe, których spełnienie powinno zostać sprawdzone
w trakcie testów. Kryteria akceptacji powstają zwykle w wyniku rozmowy (patrz sekcja 4.5.1).

Celem kryteriów akceptacji jest:

● określenie zakresu historyjki użytkownika;

● osiągnięcie konsensusu wśród interesariuszy;

● opisanie pozytywnych i negatywnych scenariuszy;

● stworzenie podstawy do testowania akceptacyjnego historyjki użytkownika (patrz sekcja 4.5.3);

● umożliwienie dokładnego planowania i szacowania.

Kryteria akceptacji związane z historyjką użytkownika można pisać na kilka sposobów. Dwa
najpopularniejsze formaty to:

● format ukierunkowany na scenariusze (np. format Given/When/Then stosowany w wytwarzaniu
sterowanym zachowaniem; patrz sekcja 2.1.3);

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 55 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● format ukierunkowany na reguły (np. lista weryfikacyjna w punktach lub przypisanie danych
wejściowych do danych wyjściowych w formie tabelarycznej).

Większość kryteriów akceptacji można udokumentować w jednym z dwóch powyższych formatów, ale
zespół może również skorzystać z innego, niestandardowego formatu pod warunkiem, że kryteria będą
należycie zdefiniowane i jednoznaczne.

4.5.3. Wytwarzanie sterowane testami akceptacyjnymi (ATDD)

Wytwarzanie sterowane testami akceptacyjnymi to podejście typu „najpierw test” (patrz sekcja 2.1.3),
zgodnie z którym przypadki testowe tworzy się przed zaimplementowaniem historyjki użytkownika.
Tworzeniem przypadków testowych zajmują się członkowie zespołu mający różne punkty widzenia, na
przykład klienci, programiści i testerzy (Adzic 2009). Uzyskane w ten sposób przypadki testowe mogą być
następnie wykonywane manualnie lub automatycznie.

Pierwszym krokiem jest przeprowadzenie warsztatów tworzenia specyfikacji, podczas których członkowie
zespołu analizują, omawiają i piszą historyjkę użytkownika oraz związane z nią kryteria akceptacji (o ile nie
zostały jeszcze zdefiniowane). W ramach tego procesu korygowane są wszelkie braki, niejednoznaczności
lub defekty występujące w historyjce użytkownika. Kolejnym krokiem jest stworzenie przypadków
testowych, przy czym czynność ta może być wykonywana przez cały zespół lub indywidualnie przez
testera. Przypadki testowe są tworzone w oparciu o kryteria akceptacji i mogą być traktowane jako
przykłady sposobu działania oprogramowania. Dzięki temu zespół może poprawnie zaimplementować
historyjkę użytkownika.

Z uwagi na to, że przykłady i testy są takie same, pojęcia te bywają często używane zamiennie. Podczas
projektowania testów można stosować techniki testowania opisane w podrozdziałach 4.2, 4.3 i 4.4.

Pierwsze przypadki testowe są z reguły przypadkami pozytywnymi, co oznacza, że mają na celu
potwierdzenie prawidłowego zachowania — bez wyjątków lub warunków błędów — i odzwierciedlają
sekwencję czynności wykonywaną w sytuacji, w której wszystko działa zgodnie z oczekiwaniami. Po
wykonaniu pozytywnych przypadków testowych zespół powinien przystąpić do testowania negatywnego,
a na koniec powinien również zadbać o pokrycie niefunkcjonalnych charakterystyk jakościowych (takich jak
wydajność czy użyteczność). Przypadki testowe powinny być wyrażone w sposób zrozumiały dla
interesariuszy. Zazwyczaj zawierają one zdania w języku naturalnym określające niezbędne warunki
wstępne (jeśli mają zastosowanie), dane wejściowe oraz warunki wyjściowe.

Przypadki testowe muszą pokrywać wszystkie charakterystyki historyjki użytkownika, ale nie powinny
wykraczać poza jej zakres, natomiast kryteria akceptacji mogą opisywać szczegółowo niektóre kwestie
opisane w historyjce. Ponadto należy unikać sytuacji, w których dwa przypadki testowe opisują tę samą
charakterystykę historyjki użytkownika.

Jeśli przypadki testowe zostaną zarejestrowane w formacie obsługiwanym przez strukturę do testów
automatycznych, programiści mogą zautomatyzować ich wykonywanie poprzez opracowanie kodu
pomocniczego w trakcie implementowania funkcjonalności opisanej w historyjce użytkownika. Testy
akceptacyjne stają się wówczas wykonywalnymi wymaganiami.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 56 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

5. Zarządzanie czynnościami testowymi — 335 minut

Słowa kluczowe

analiza ryzyka, identyfikacja ryzyka, kontrola ryzyka, kryteria wejścia, kryteria wyjścia, kwadranty testowe,
łagodzenie ryzyka, monitorowanie ryzyka, monitorowanie testów, nadzór nad testami, ocena ryzyka,
piramida testów, plan testów, planowanie testów, podejście do testowania, poziom ryzyka, raport
o defekcie, raport o postępie testów, ryzyko, ryzyko produktowe, ryzyko projektowe, strategia
testów,sumaryczny raport
z testów, testowanie oparte na ryzyku, zarządzanie defektami, zarządzanie ryzykiem

Cele nauczania w rozdziale 5:

5.1 Planowanie testów

FL-5.1.1 (K2) Kandydat omawia na przykładach cel i treść planu testów.

FL-5.1.2 (K1) Kandydat rozpoznaje, jaki jest wkład testera w planowanie iteracji i wydań.

FL-5.1.3 (K2) Kandydat porównuje i zestawia ze sobą kryteria wejścia i kryteria wyjścia.

FL-5.1.4 (K3) Kandydat oblicza pracochłonność testowania przy użyciu technik szacowania.

FL-5.1.5 (K3) Kandydat stosuje priorytetyzację przypadków testowych.

FL-5.1.6 (K1) Kandydat pamięta pojęcia związane z piramidą testów.

FL-5.1.7 (K2) Kandydat podsumowuje kwadranty testowe oraz ich relację do poziomów testów i typów
testów.

5.2 Zarządzanie ryzykiem

FL-5.2.1 (K1) Kandydat określa poziom ryzyka na podstawie prawdopodobieństwa ryzyka i wpływu
ryzyka.

FL-5.2.2 (K2) Kandydat rozróżnia ryzyka projektowe i produktowe.

FL-5.2.3 (K2) Kandydat wyjaśnia potencjalny wpływ analizy ryzyka produktowego na staranność
i zakres testów.

FL-5.2.4 (K2) Kandydat wyjaśnia, jakie środki można podjąć w odpowiedzi na przeanalizowane ryzyka

produktowe.

5.3 Monitorowanie testów, nadzór nad testami i ukończenie testów

FL-5.3.1 (K1) Kandydat pamięta metryki stosowane w odniesieniu do testowania.

FL-5.3.2 (K2) Kandydat podsumowuje cele i treść raportów z testów oraz wskazuje ich odbiorców.

FL-5.3.3 (K2) Kandydat omawia na przykładach sposób przekazywania informacji o statusie testowania.

5.4 Zarządzanie konfiguracją

FL-5.4.1 (K2) Kandydat podsumowuje, w jaki sposób zarządzanie konfiguracją wspomaga testowanie.

5.5 Zarządzanie defektami

FL-5.5.1 (K3) Kandydat sporządza raport o defekcie.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 57 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

5.1. Planowanie testów

5.1.1. Cel i treść planu testów

W planie testów opisuje się cele, zasoby i procesy związane z projektem testowania. Plan testów:

● pozwala udokumentować sposób i harmonogram osiągania celów testów;

● pomaga zagwarantować, że wykonywane czynności testowe spełnią ustalone kryteria;

● służy do wymiany informacji z członkami zespołu i innymi interesariuszami;

● pozwala wykazać, że testowanie będzie odbywać się zgodnie z dotychczasową polityką testów
i strategią testów (bądź uzasadnić ewentualne odstępstwa od nich).

Planowanie testów pozwala odpowiednio ukierunkować sposób myślenia testerów i zmusza ich do
stawienia czoła przyszłym wyzwaniom związanym z ryzykami, harmonogramami, relacjami
interpersonalnymi, narzędziami, kosztami, nakładami pracy itd. Proces przygotowywania planu testów jest
dobrą okazją do przemyślenia nakładów pracy, jakie będą niezbędne do osiągnięcia celów projektu
testowania.

Typowe zagadnienia poruszane w planie testów to między innymi:

● kontekst testowania (np. zakres, cele testówi podstawa testów);

● założenia i ograniczenia projektu testowania;

● interesariusze (np. role, obowiązki, istotność z punktu widzenia testowania, potrzeby w zakresie
rekrutacji i szkoleń);

● wymiana informacji (np. formy i częstotliwość wymiany informacji, szablony dokumentów);

● rejestr ryzyk (np. ryzyk produktowych i projektowych);

● podejście do testowania (np. poziomy testów, typy testów, techniki testowania, produkty pracy
związane z testami, kryteria wejścia i wyjścia, niezależność testowania, gromadzone metryki,
wymagania dotyczące danych testowych, wymagania dotyczące środowiska testowego,
odstępstwa od polityki testów i strategii testów obowiązujących w organizacji);

● budżet i harmonogram.

Dokładniejsze informacje na temat planu testów i jego treści zawiera standard ISO/IEC/IEEE 29119-3.

5.1.2. Wkład testera w planowanie iteracji i wydań

W iteracyjnych cyklach wytwarzania oprogramowania występują zwykle dwa rodzaje planowania:
planowanie wydań i planowanie iteracji.

Planowanie wydań odbywa się w perspektywie wprowadzenia produktu do eksploatacji i obejmuje
definiowanie/redefiniowanie backlogu produktu, a w pewnych przypadkach również doprecyzowanie
większych historyjek użytkownika poprzez podzielenie ich na szereg mniejszych historyjek. Opracowany
w ten sposób plan jest też podstawą podejścia do testowania i planu testów we wszystkich iteracjach.
Testerzy zaangażowani w planowanie wydań piszą testowalne historyjki użytkownika i kryteria akceptacji
(patrz podrozdział 4.5), uczestniczą w analizach ryzyka projektowego i produktowego (patrz

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 58 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

podrozdział 5.2), szacują pracochłonność testowania związanego z historyjkami użytkownika (patrz
sekcja 5.1.4), ustalają podejście do testowania oraz planują testowanie w związku z danym wydaniem.

Planowanie iteracji odbywa się z kolei w perspektywie zakończenia pojedynczej iteracji produktu i dotyczy
backlogu tej iteracji. Testerzy zaangażowani w planowanie iteracji uczestniczą w szczegółowej analizie
ryzyka związanego z historyjkami użytkownika, określają testowalność historyjek użytkownika, dzielą
historyjki użytkownika na zadania (w szczególności zadania testowe), szacują pracochłonność wszystkich
zadań testowych oraz identyfikują i doprecyzowują aspekty funkcjonalne i niefunkcjonalne przedmiotu
testów.

5.1.3. Kryteria wejścia i kryteria wyjścia

Kryteria wejścia określają warunki wstępne, które muszą zostać spełnione przed rozpoczęciem danej
czynności. W przypadku niespełnienia kryteriów wejścia wykonanie tej czynności może być trudniejsze
oraz bardziej czasochłonne, kosztowne i ryzykowne. Kryteria wyjścia określają warunki, które muszą
zostać spełnione, aby można było uznać wykonywanie danej czynności za zakończone. Kryteria wejścia
i kryteria wyjścia należy zdefiniować w odniesieniu do każdego poziomu testów (kryteria te różnią się
w zależności od celów testów).

Typowe kryteria wejścia to między innymi: dostępność zasobów (takich jak pracownicy, narzędzia,
środowiska, dane testowe, budżet i czas), dostępność testaliów (takich jak podstawa testów, testowalne
wymagania, historyjki użytkownika i przypadki testowe) oraz początkowy poziom jakości przedmiotu testów
(np. pomyślne przejście wszystkich testów dymnych).

Typowe kryteria wyjścia to między innymi: miary staranności (np. osiągnięty poziom pokrycia, liczba
nieusuniętych defektów, gęstość defektów lub liczba niezaliczonych przypadków testowych) oraz binarne
kryteria „tak/nie” (np. wykonanie zaplanowanych testów, wykonanie testowania statycznego, zgłoszenie
wszystkich wykrytych defektów bądź zautomatyzowanie wszystkich testów regresji).

Za poprawne kryterium wyjścia można także uznać przekroczenie terminu lub budżetu. Zakończenie
testowania w takich okolicznościach — nawet w przypadku niespełnienia innych kryteriów wyjścia — może
być dopuszczalne, o ile interesariusze znają i akceptują ryzyko związane z wydaniem systemu bez
dalszego testowania.

W modelu zwinnego wytwarzania oprogramowania kryteria wyjścia są zwykle nazywane definicją
ukończenia (ang. Definition of Done) i określają obiektywne metryki, zgodnie z którymi zespół może uznać
dany element za nadający się do przekazania do eksploatacji. Kryteria wejścia, które musi spełnić historyjka
użytkownika, aby można było rozpocząć prace programistyczne i/lub czynności związane z testowaniem,
są nazywane definicją gotowości (ang. Definition of Ready).

5.1.4. Techniki szacowania

Szacowanie pracochłonności testów polega na przewidywaniu nakładów pracy związanych z testowaniem,
które są niezbędne do osiągnięcia celów projektu testowania. Ważne jest przy tym uświadomienie
interesariuszom, że oszacowania dokonuje się na podstawie szeregu założeń, w związku z czym jest ono
zawsze obarczone błędem szacowania. Oszacowania są zwykle dokładniejsze w przypadku mniejszych
zadań, dlatego przy szacowaniu dużych zadań należy rozbić takie zadania na szereg mniejszych
elementów, co ułatwia określenie przewidywanego nakładu pracy.

W niniejszym sylabusie opisano następujące cztery techniki szacowania:

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 59 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Szacowanie na podstawie proporcji. W ramach tej techniki opartej na metrykach gromadzi się dane
liczbowe z wcześniejszych projektów realizowanych w danej organizacji, co umożliwia ustalenie
„standardowych” proporcji współczynników w odniesieniu do podobnych projektów. Współczynniki
opisujące własne projekty danej organizacji (określone np. na podstawie danych historycznych) są co do
zasady najlepszym źródłem informacji na potrzeby procesu szacowania. W oparciu o powyższe
współczynniki standardowe można następnie oszacować pracochłonność nowego projektu. Na przykład
jeśli w poprzednim projekcie proporcja pracochłonności wytwarzania do testowania oprogramowania
wyniosła 3:2, a w bieżącym projekcie nakłady pracy na wytwarzanie mają wynieść 600 osobodni, to
pracochłonność testowania można oszacować na poziomie 400 osobodni.

Ekstrapolacja. Podstawą tej techniki opartej na metrykach jest dokonywanie pomiarów na jak
najwcześniejszym etapie bieżącego projektu w celu zebrania niezbędnych danych. Po dokonaniu
wystarczającej liczby obserwacji pracochłonność pozostałych zadań można określić w przybliżeniu
poprzez ekstrapolację dostępnych danych (zwykle z zastosowaniem modelu matematycznego). Metoda ta
doskonale sprawdza się w iteracyjnych cyklach wytwarzania oprogramowania, w których zespół może na
przykład ekstrapolować pracochłonność testów w nadchodzącej iteracji poprzez wyciągnięcie średniej
z ostatnich trzech iteracji.

Szerokopasmowa technika delficka. W przypadku tej iteracyjnej techniki eksperckiej eksperci dokonują
oszacowań na podstawie posiadanego doświadczenia. Każdy ekspert szacuje nakłady pracy samodzielnie
(bez konsultacji z innymi). Następnie wyniki są zbierane i analizowane pod kątem występowania odchyleń
wykraczających poza uzgodnione granice, a w przypadku wystąpienia takich odchyleń eksperci wspólnie
omawiają bieżące oszacowania. Następnie każdy z ekspertów jest proszony o przygotowanie (również bez
konsultacji z innymi ekspertami) nowego oszacowania na podstawie otrzymanych informacji zwrotnych.
Proces ten jest powtarzany do momentu osiągnięcia konsensusu. Wariantem szerokopasmowej techniki
delfickiej jest tzw. poker planistyczny — metoda powszechnie stosowana w zwinnym wytwarzaniu
oprogramowania. W ramach tej metody oszacowań dokonuje się zwykle przy użyciu kart z liczbami
odpowiadającymi wielkości nakładów pracy.

Szacowanie trójpunktowe. W przypadku tej techniki eksperckiej eksperci przygotowują trzy oszacowania:
najbardziej optymistyczne (a), najbardziej prawdopodobne (m) i najbardziej pesymistyczne (b),
a ostateczna szacowana wartość (E) jest ich średnią ważoną arytmetyczną. W najpopularniejszym
wariancie tej techniki przewidywany nakład pracy oblicza się według wzoru: E = (a + 4 × m + b) / 6. Zaletą
tej techniki jest fakt, że umożliwia ona ekspertom obliczenie błędu pomiaru: SD = (b – a) / 6. Na przykład
jeśli szacowane wartości (w osobogodzinach) wynoszą a = 6, m = 9 i b = 18, to ostateczna szacowana
wartość wynosi 10±2 osobogodzin (tj. od 8 do 12 osobogodzin), ponieważ E = (6 + 4 × 9 + 18) / 6 = 10,
a SD = (18 – 6) / 6 = 2.

Więcej informacji na temat tych i wielu innych technik szacowania testów można znaleźć w (Kan 2003,
Koomen 2006, Westfall 2009).

5.1.5. Ustalanie priorytetów przypadków testowych

Po opracowaniu specyfikacji przypadków i procedur testowych oraz zgrupowaniu ich w zestawy testowe
można utworzyć na ich podstawie harmonogram wykonywania testów, który określa kolejność, w jakiej
mają być uruchamiane. Przy ustalaniu priorytetów przypadków testowych należy uwzględnić różne
czynniki. Poniżej opisano najczęściej stosowane strategie ustalania priorytetów przypadków testowych.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 60 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● Ustalanie priorytetów na podstawie ryzyka. W przypadku tej strategii o kolejności wykonywania
testów decydują wyniki analizy ryzyka (patrz sekcja 5.2.3). Jako pierwsze wykonywane są
przypadki testowe pokrywające najważniejsze ryzyka.

● Ustalanie priorytetów na podstawie pokrycia. W przypadku tej strategii kolejność wykonywania
testów wynika z pokrycia (np. pokrycia instrukcji kodu). Jako pierwsze wykonywane są przypadki
testowe pozwalające uzyskać największe pokrycie. W innym wariancie, zwanym ustalaniem
priorytetów na podstawie dodatkowego pokrycia, jako pierwszy wykonywany jest przypadek
testowy zapewniający największe pokrycie, a w następnej kolejności — przypadki zapewniające
największe dodatkowe pokrycie.

● Ustalanie priorytetów na podstawie wymagań. Zgodnie z tą strategią kolejność wykonywania
testów ustala się na podstawie priorytetów wymagań, które można powiązać z odpowiadającymi
im przypadkami testowymi. Priorytety wymagań określają w tym przypadku interesariusze. Jako
pierwsze wykonywane są przypadki testowe związane z najważniejszymi wymaganiami.

O ile jest to możliwe, przypadki testowe powinny być wykonywane w kolejności odpowiadającej poziomom
priorytetów — na przykład z wykorzystaniem jednej z wyżej wymienionych strategii ustalania priorytetów.
Praktyka ta może jednak nie mieć zastosowania, jeśli przypadki testowe lub testowane przez nie cechy są
uzależnione od innych elementów. Przykładem może być sytuacja, gdy przypadek testowy o wyższym
priorytecie jest uzależniony od przypadku o niższym priorytecie — wówczas należy w pierwszej kolejności
wykonać przypadek o niższym priorytecie.

Przy ustalaniu kolejności wykonywania testów należy również wziąć pod uwagę dostępność zasobów.
Wynika to z faktu, że niektóre zasoby — takie jak niezbędne narzędzia lub środowiska testowe bądź
pracownicy — mogą być dostępne tylko przez określony czas.

5.1.6. Piramida testów

Piramida testów to model odzwierciedlający fakt, że różne testy mogą mieć różną szczegółowość. Model
piramidy testów pomaga zespołowi w automatyzowaniu testów i określaniu ich pracochłonności poprzez
wskazanie, że różne cele testów można osiągnąć przy zastosowaniu różnych poziomów automatyzacji.
Poszczególne warstwy piramidy odpowiadają grupom testów — im wyższa warstwa, tym niższy poziom ich
izolacji i dłuższy czas ich wykonywania. Testy umieszczone w najniższej warstwie są małe, odizolowane
i szybkie, a do tego sprawdzają niewielką część funkcjonalności, w związku z czym do uzyskania
należytego pokrycia potrzebna jest zwykle ich bardzo duża liczba. W najwyższej warstwie znajdują się
z kolei złożone i kompleksowe testy wysokiego poziomu. Ich wykonywanie zajmuje więcej czasu niż
wykonywanie testów z niższych warstw, a sprawdzany przez nie obszar funkcjonalności jest szeroki, co
oznacza, że do uzyskania należytego poziomu pokrycia wystarczy tylko kilka takich testów. Liczba
i nazewnictwo warstw bywają różne. Na przykład w pierwotnym modelu piramidy testów (Cohn 2009)
zdefiniowano trzy warstwy: „testy modułowe”, „testy usług” i „testy interfejsu użytkownika”, a w innym
popularnym modelu określono testy modułowe, testy integracyjne (testy integracji modułów) i testy
kompleksowe (ang. end-to-end). Mogą być również stosowane inne poziomy testów (patrz sekcja 2.2.1).

5.1.7. Kwadranty testowe

Kwadranty testowe, które zdefiniował jako pierwszy Brian Marick (Marick 2003, Crispin 2008), służą do
grupowania poziomów testów wraz z odpowiednimi typami testów, czynnościami, technikami testowania
i produktami pracy w kontekście zwinnego wytwarzania oprogramowania. Model ten ułatwia zarządzanie
testami poprzez wizualizowanie powyższych elementów — co zapewnia uwzględnienie wszystkich

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 61 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

odpowiednich typów i poziomów testów w cyklu wytwarzania oprogramowania — oraz uświadamianie
testerom, że niektóre typy testów są bardziej istotne niż inne na określonych poziomach testów. Dodatkową
zaletą jest możliwość rozróżniania i opisywania poszczególnych typów testów na potrzeby wszystkich
interesariuszy, w tym programistów, testerów i przedstawicieli jednostek biznesowych.

W opisywanym modelu testy mogą mieć cel biznesowy lub technologiczny oraz mogą służyć wspieraniu
zespołu (np. poprzez ukierunkowanie procesu wytwarzania oprogramowania) lub krytyce produktu (np.
poprzez mierzenie jego zachowania względem oczekiwań). Wypadkowa tych dwóch aspektów decyduje
o przynależności do jednego z czterech kwadrantów:

● Kwadrant Q1 (cel technologiczny, wspieranie zespołu) obejmuje testy modułowe i testy integracji
modułów. Testy te powinny być wykonywane automatycznie i objęte procesem ciągłej integracji.

● Kwadrant Q2 (cel biznesowy, wspieranie zespołu) obejmuje testy funkcjonalne, przykłady, testy
oparte na historyjkach użytkownika, prototypy doświadczenia użytkownika, testowanie API oraz
symulacje. Testy te sprawdzają spełnienie kryteriów akceptacji i mogą być wykonywane manualnie
lub automatycznie.

● Kwadrant Q3 (cel biznesowy, krytyka produktu) obejmuje testowanie eksploracyjne, testowanie
użyteczności i testowanie akceptacyjne przez użytkownika. Testy te są ukierunkowane na
użytkownika i często wykonywane manualnie.

● Kwadrant Q4 (cel technologiczny, krytyka produktu) obejmuje testy dymne i testy niefunkcjonalne
(z wyłączeniem testów użyteczności). Testy te są często wykonywane automatycznie.

5.2. Zarządzanie ryzykiem

Organizacje mają do czynienia z wieloma czynnikami wewnętrznymi i zewnętrznymi, które wywołują
niepewność co do tego, czy i kiedy zostaną osiągnięte zakładane cele (ISO 31000). Zarządzanie ryzykiem
to proces, który umożliwia organizacjom zwiększanie prawdopodobieństwa osiągnięcia celów
i podnoszenie jakości produktów, a także budowanie zaufania interesariuszy.

Najważniejsze działania związane z zarządzaniem ryzykiem to:

● analiza ryzyka (obejmująca identyfikację ryzyka i ocenę ryzyka; patrz sekcja 5.2.3);

● kontrola ryzyka (obejmująca łagodzenie ryzyka i monitorowanie ryzyka; patrz sekcja 5.2.4).

Podejście do testowania, zgodnie z którym podstawą doboru czynności testowych i ustalania ich
priorytetów oraz zarządzania nimi są analiza ryzyka i kontrola ryzyka, jest nazywane testowaniem opartym
na ryzyku.

5.2.1. Definicja i atrybuty ryzyka

Ryzyko to potencjalne zdarzenie, niebezpieczeństwo, zagrożenie bądź sytuacja, którego lub której
wystąpienie powoduje niekorzystny skutek. Do charakteryzowania ryzyka służą dwa parametry:

● prawdopodobieństwo ryzyka, czyli prawdopodobieństwo wystąpienia danego ryzyka (większe niż
zero i mniejsze niż jeden);

● wpływ ryzyka (szkoda), czyli konsekwencje wystąpienia danego ryzyka.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 62 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Powyższe dwa parametry wyrażają poziom ryzyka, który jest miarą wielkości danego ryzyka: im wyższy
poziom ryzyka, tym ważniejsze jest podjęcie działań zaradczych.

5.2.2. Ryzyka projektowe i produktowe

W testowaniu oprogramowania istotne są zasadniczo dwa typy ryzyk: ryzyka projektowe oraz ryzyka
produktowe.

Ryzyka projektowe są związane z zarządzaniem projektem i nadzorem nad jego realizacją. Do ryzyk

projektowych należą:

● problemy organizacyjne (np. opóźnienia w dostawach produktów pracy, niedokładne oszacowania

lub cięcia finansowe);

● problemy kadrowe (np. niewystarczające umiejętności, konflikty, problemy z wymianą informacji

lub braki kadrowe);

● problemy techniczne (np. nieplanowane rozszerzanie zakresu projektu lub niedostateczna obsługa

narzędzi);

● problemy związane z dostawcami (np. niedostarczenie niezbędnego elementu przez

zewnętrznego dostawcę lub ogłoszenie upadłości przez firmę świadczącą usługi wsparcia

technicznego).

Wystąpienie ryzyka projektowego może mieć wpływ na harmonogram realizacji, budżet lub zakres projektu,

a tym samym na możliwość osiągnięcia jego celów.

Ryzyka produktowe są związane z charakterystykami jakościowymi produktu (opisanymi np. w modelu

jakości określonym przez standard ISO 25010). Przykładami ryzyka produktowego mogą być następujące

problemy: brakujące lub niewłaściwe elementy funkcjonalności, niepoprawne obliczenia, awarie podczas

wykonywania programu, niedopracowana architektura, nieefektywne algorytmy, zbyt długi czas

odpowiedzi, niski poziom doświadczenia użytkownika (ang. User Experience — UX) lub podatności na

zagrożenia zabezpieczeń. Wystąpienie ryzyka produktowego może pociągać za sobą cały szereg

negatywnych konsekwencji, takich jak:

● niezadowolenie użytkowników;

● utrata przychodów, zaufania lub reputacji;

● szkody wyrządzone stronom trzecim;

● wysokie koszty pielęgnacji i przeciążenie struktur wsparcia technicznego;

● odpowiedzialność karna;

● w skrajnych przypadkach — szkody materialne, uszczerbek na zdrowiu, a nawet śmierć.

5.2.3. Analiza ryzyka produktowego

Z perspektywy testowania celem analizy ryzyka produktowego jest uzyskanie wiedzy na temat tego rodzaju
ryzyka i wykorzystanie jej do ukierunkowania działań wykonywanych podczas testowania w sposób

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 63 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

pozwalający zminimalizować poziom ryzyka rezydualnego (resztkowego). Analizę ryzyka produktowego
należy w miarę możliwości rozpocząć na wczesnym etapie cyklu wytwarzania oprogramowania.

Analiza ryzyka produktowego obejmuje identyfikację ryzyka i ocenę ryzyka. Identyfikacja ryzyka polega na
wygenerowaniu wyczerpującej listy ryzyk, przy czym interesariusze mogą identyfikować takie ryzyka za
pomocą różnych technik i narzędzi, takich jak burza mózgów, warsztaty, wywiady i diagramy przyczynowo-
skutkowe. Ocena ryzyka obejmuje z kolei sklasyfikowanie zidentyfikowanych ryzyk, ustalenie
prawdopodobieństwa, wpływu i poziomu ryzyka oraz ustalenie priorytetów ryzyk i zaproponowanie
sposobów postępowania z nimi. Klasyfikacja ułatwia przypisanie odpowiednich działań związanych
z łagodzeniem ryzyka, ponieważ ryzyka zaliczane do tej samej kategorii można zwykle łagodzić podobnymi
sposobami.

Oceny ryzyka można dokonać metodą ilościową, jakościową bądź mieszaną. W przypadku podejścia
ilościowego poziom ryzyka oblicza się jako iloczyn prawdopodobieństwa ryzyka i wpływu ryzyka, natomiast
podejście jakościowe przewiduje ustalanie poziomu ryzyka przy użyciu macierzy ryzyka.

Analiza ryzyka produktowego może mieć wpływ na staranność i zakres testowania. Jej wyniki wykorzystuje
się do:

● określenia zakresu wykonywanych testów;

● ustalenia konkretnych poziomów testów i zaproponowania typów testów, jakie mają zostać
wykonane;

● wskazania odpowiednich technik testowania i zakładanego poziomu pokrycia;

● oszacowania pracochłonności testowania w odniesieniu do każdego zadania;

● ustalenia priorytetów testowania w sposób sprzyjający jak najwcześniejszemu wykryciu defektów
krytycznych;

● ustalenia, czy w celu zmniejszenia ryzyka należy wykonać dodatkowe czynności (poza samym
testowaniem).

5.2.4. Kontrola ryzyka produktowego

Kontrola ryzyka produktowego obejmuje wszystkie środki podejmowane w odpowiedzi na zidentyfikowane
i ocenione ryzyka produktowe. W ramach kontroli ryzyka produktowego wyróżnia się łagodzenie ryzyka
i monitorowanie ryzyka. Łagodzenie ryzyka polega na wykonywaniu działań zaproponowanych na etapie
oceny ryzyka w celu obniżenia jego poziomu, natomiast celem monitorowania ryzyka jest zapewnienie
skuteczności działań związanych z łagodzeniem ryzyka, uzyskanie dalszych informacji pozwalających
usprawnić proces oceny ryzyka oraz zidentyfikowanie nowych ryzyk.

Po przeanalizowaniu danego ryzyka proces kontroli ryzyka produktowego przewiduje kilka wariantów,
takich jak: łagodzenie ryzyka poprzez testowanie, akceptacja ryzyka, przeniesienie ryzyka oraz plany
awaryjne (Veenendaal 2012). Działania, które można podjąć w celu łagodzenia ryzyka produktowego
poprzez testowanie, obejmują:

● wytypowanie testerów dysponujących właściwym poziomem doświadczenia i umiejętności —
adekwatnie do danego typu ryzyka;

● zapewnienie odpowiedniego poziomu niezależności testowania;

● przeprowadzenie przeglądów i analizy statycznej;

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 64 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● zastosowanie odpowiednich technik testowania i poziomów pokrycia;

● zastosowanie odpowiednich typów testów uwzględniających charakterystyki jakościowe, których

dotyczy ryzyko;

● wykonanie testowania dynamicznego, w tym testowania regresji.

5.3. Monitorowanie testów, nadzór nad testami i ukończenie testów

Celem monitorowania testów jest gromadzenie informacji na temat przebiegu procesu testowania.
Informacje te są wykorzystywane do oceny postępu testów oraz do pomiaru spełnienia kryteriów wyjścia
lub wykonania związanych z nimi zadań testowych (takich jak osiągnięcie zakładanego pokrycia ryzyk
produktowych, wymagań lub kryteriów akceptacji).

W ramach nadzoru nad testami informacje uzyskane w procesie monitorowania testów są wykorzystywane
do określenia (w formie dyrektyw nadzoru) niezbędnych działań korygujących, które pozwolą uzyskać
maksymalną skuteczność i efektywność testowania. Dyrektywy nadzoru mogą obejmować na przykład:

● ponowne ustalenie priorytetów testów w przypadku wystąpienia problemów wynikających ze
zidentyfikowanego ryzyka;

● dokonanie ponownej oceny elementu testowego pod kątem spełnienia kryteriów wejścia lub
wyjścia w związku z wprowadzeniem poprawek;

● wprowadzenie zmian w harmonogramie testów w związku z opóźnieniami w realizacji środowiska
testowego;

● dodanie nowych zasobów w zależności od bieżących potrzeb.

Ukończenie testów polega na zebraniu danych pochodzących z wykonanych czynności testowych w celu
usystematyzowania i połączenia zdobytych doświadczeń, testaliów i innych istotnych informacji. Czynności
związane z ukończeniem testów są wykonywane w momencie osiągnięcia kamieni milowych projektu,
takich jak: ukończenie testów danego poziomu, zakończenie iteracji projektu zwinnego, zakończenie
realizacji (lub anulowanie) projektu testowania, przekazanie systemu oprogramowania do eksploatacji bądź
zakończenie prac nad wydaniem pielęgnacyjnym (ang. maintenance release).

5.3.1. Metryki stosowane w testowaniu

Metryki dotyczące testów gromadzi się w celu określenia postępu realizacji harmonogramu i budżetu,
bieżącej jakości przedmiotu testów oraz skuteczności czynności testowych z punktu widzenia realizacji
celów testów lub celu iteracji. W ramach monitorowania testów zbiera się wiele metryk przydatnych
w kontekście nadzoru nad testami i ukończenia testów.

Powszechnie stosowane są między innymi następujące metryki dotyczące testów:

● metryki dotyczące postępu realizacji projektu (np. ukończenie zadań, użycie zasobów,
pracochłonność testowania);

● metryki dotyczące postępu testów (np. postęp implementacji przypadków testowych, postęp
przygotowania środowiska testowego, liczba wykonanych/niewykonanych
i zaliczonych/niezaliczonych przypadków testowych, czas wykonywania testów);

● metryki dotyczące jakości produktów (np. dostępność, czas odpowiedzi, średni czas do awarii);

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 65 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● metryki dotyczące defektów (np. liczba i priorytety wykrytych/usuniętych defektów, gęstość
defektów, odsetek wykrytych defektów);

● metryki dotyczące ryzyka (np. poziom ryzyka rezydualnego);

● metryki dotyczące pokrycia (np. pokrycie wymagań, pokrycie kodu);

● metryki dotyczące kosztów (np. koszty testowania, koszt jakości na poziomie organizacji).

5.3.2. Cel, treść i odbiorcy raportów z testów

Raporty z testów służą do podsumowywania i przekazywania informacji na temat testów w trakcie

testowania i po jego zakończeniu. Raporty o postępie testów są elementem ciągłego nadzoru nad testami,

w związku z czym zawarte w nich informacje muszą być na tyle obszerne, aby w razie potrzeby umożliwić

modyfikację harmonogramu testów, przydziału zasobów lub planu testów — na przykład w związku

z odstępstwami od planu lub zmieniającymi się okolicznościami. Sumaryczne raporty z testów stanowią

podsumowanie określonego etapu testowania (np. poziomu testów, cyklu testowego lub iteracji) i mogą

dostarczać informacji na potrzeby dalszego testowania.

W ramach monitorowania testów i nadzoru nad testami, zespół testowy sporządza raporty o postępie

testów, aby zapewnić interesariuszom stały dostęp do informacji. Raporty takie są zazwyczaj sporządzane

regularnie (np. raz dziennie, raz w tygodniu itp.) i zawierają informacje na temat:

● okresu testowania;

● postępu testów (np. wykonania zadań przed terminem lub po terminie), w tym wszelkich istotnych

odchyleń;

● utrudnień w testowaniu i sposobów ich obejścia;

● metryk dotyczących testów (przykłady podano w sekcji 5.3.1);

● nowych i zmienionych ryzyk zaobserwowanych w okresie testowania;

● testów zaplanowanych na następny okres.

Sumaryczny raport z testów jest sporządzany na etapie ukończenia testów — po zakończeniu realizacji

projektu bądź po wykonaniu testów danego poziomu lub typu, iteracji oraz, w sytuacji idealnej, po spełnieniu

kryteriów wyjścia. W raporcie tym wykorzystywane są dane z raportów o postępie testów oraz inne dane.

Typowy sumaryczny raport z testów zawiera między innymi:

● podsumowanie testów;

● ocenę jakości testowania i produktu z punktu widzenia pierwotnego planu testów (tj. celów testów

i kryteriów wyjścia);

● informacje o odstępstwach od planu testów (np. o różnicach w stosunku do pierwotnie

zakładanego harmonogramu, czasu trwania i nakładu pracy);

● informacje o utrudnieniach w testowaniu i sposobach ich obejścia;

● metryki dotyczące testów określone na podstawie raportów o postępie testów;

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 66 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● informacje o niezłagodzonych ryzykach i nieusuniętych defektach;

● zdobyte doświadczenia, które są istotne z punktu widzenia testowania.

Poszczególne grupy odbiorców mają różne wymagania co do zakresu informacji podawanych w raportach,

a także różne oczekiwania co do stopnia sformalizowania i częstotliwości przekazywania raportów.

Wymiana informacji o postępie testów w obrębie zespołu odbywa się zwykle z dużą częstotliwością i na

stopie nieformalnej, natomiast raport na temat testowania dotyczący ukończonego projektu jest

sporządzany zgodnie z określonym wzorem i przedstawiany tylko raz.

Szablony i przykłady raportów o postępie testów (nazywanych raportami o statusie testów) oraz

sumarycznych raportów z testów zawiera standard ISO/IEC/IEEE 29119-3.

5.3.3. Przekazywanie informacji o statusie testowania

Optymalny sposób przekazywania informacji o statusie testów zależy od uwarunkowań związanych

z zarządzaniem testami, strategii testów przyjętej w danej organizacji i obowiązujących norm prawnych,

a w przypadku samoorganizujących się zespołów (patrz sekcja 1.5.2) — również od samego zespołu.

Dostępne są między innymi następujące opcje:

● słowna wymiana informacji z członkami zespołu i innymi interesariuszami;

● tablice wskaźników (ang. dashboard), np. tablice wskaźników dotyczące ciągłej integracji lub
ciągłego dostarczania, tablice zadań i wykresy spalania;

● kanały komunikacji elektronicznej, np. e-mail czy chat;

● dokumentacja w formie elektronicznej;

● formalne raporty z testów (patrz sekcja 5.3.2).

Zależnie od sytuacji można stosować jedną lub kilka z powyższych opcji. W przypadku rozproszonych

zespołów, w których bezpośrednie rozmowy nie zawsze są możliwe z uwagi na odległość czy różnicę

czasu, lepszym rozwiązaniem może być bardziej formalna wymiana informacji. Ponadto różni

interesariusze są zwykle zainteresowani różnymi informacjami, w związku z czym ważne jest odpowiednie

dostosowanie treści przekazywanych komunikatów.

5.4. Zarządzanie konfiguracją

W kontekście testowania zarządzanie konfiguracją to uporządkowany proces umożliwiający

identyfikowanie, nadzorowanie i śledzenie produktów pracy, takich jak: plany testów, strategie testów,

warunki testowe, przypadki testowe, skrypty testowe, wyniki testów, dzienniki testów oraz raporty z testów.

W ramach tego procesu powyższe produkty pracy są nazywane elementami konfiguracji.

W przypadku złożonego elementu konfiguracji (np. środowiska testowego) zarządzanie konfiguracją

pozwala zarejestrować również jego elementy składowe wraz z informacją o relacjach między takimi

elementami i ich wersjach. Element konfiguracji, który został zatwierdzony do testowania, staje się

konfiguracją bazową i może być modyfikowany wyłącznie w ramach formalnego procesu nadzoru nad

zmianami.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 67 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

W przypadku utworzenia nowej konfiguracji bazowej zmodyfikowane elementy konfiguracji są

dokumentowane, aby umożliwić powrót do poprzedniej konfiguracji bazowej w celu odtworzenia

wcześniejszych wyników testów.

Zarządzanie konfiguracją umożliwia sprawny przebieg testowania poprzez zagwarantowanie, że:

● wszystkie elementy konfiguracji, w tym elementy testowe (tj. poszczególne elementy przedmiotu

testów), są jednoznacznie identyfikowane, objęte kontrolą wersji i śledzeniem zmian oraz

powiązane z innymi elementami konfiguracji w sposób pozwalający utrzymać możliwość śledzenia

na wszystkich etapach procesu testowego;

● wszystkie zidentyfikowane dokumenty i elementy oprogramowania są przywoływane w sposób

jednoznaczny w testaliach.

Ciągła integracja, ciągłe dostarczanie i ciągłe wdrażanie oraz związane z nimi procesy testowania są

zwykle realizowane w ramach zautomatyzowanego potoku DevOps (patrz sekcja 2.1.4), który standardowo

obejmuje również zautomatyzowane zarządzanie konfiguracją.

5.5. Zarządzanie defektami

Z uwagi na to, że jednym z głównych celów testów jest wykrywanie defektów, niezbędny jest ustalony

proces zarządzania defektami. Chociaż w tym podrozdziale jest mowa o „defektach”, zgłaszane anomalie

mogą okazać się zarówno rzeczywistymi defektami, jak i czymś zupełnie innym (np. rezultatami fałszywie

pozytywnymi lub żądaniami zmiany). Wszelkie wątpliwości w tym zakresie są rozstrzygane podczas

rozpatrywania raportów o defektach. Anomalie mogą być zgłaszane w dowolnej fazie cyklu wytwarzania

oprogramowania, a sposób ich zgłaszania zależy od konkretnego cyklu. Nieodzownymi elementami

procesu zarządzania defektami są: przepływ pracy umożliwiający obsługę poszczególnych defektów lub

anomalii od momentu ich wykrycia do momentu zamknięcia zgłoszenia oraz reguły klasyfikacji takich

defektów lub anomalii. Na powyższy przepływ pracy składają się czynności związane z rejestrowaniem,

analizowaniem i klasyfikowaniem zgłaszanych anomalii, podejmowaniem decyzji o właściwym sposobie

reagowania (usunięcie problemu, pozostawienie bez zmian) oraz zamykaniem raportów o defektach.

Ustalonej procedury muszą przestrzegać wszyscy zaangażowani interesariusze. Podobny sposób

postępowania jest również zalecany w przypadku defektów wykrytych w trakcie testowania statycznego

(a zwłaszcza analizy statycznej).

Typowy raport o defekcie ma na celu:

● dostarczenie osobom, które są odpowiedzialne za obsługę i usuwanie zgłoszonych defektów,

informacji wystarczających do rozwiązania problemu;

● umożliwienie śledzenia jakości produktu pracy;

● przedstawienie sugestii dotyczących usprawnienia procesu wytwarzania oprogramowania

i procesu testowego.

Raport o defekcie rejestrowany podczas testowania dynamicznego zawiera zwykle następujące informacje:

● jednoznaczny identyfikator;

● tytuł i krótkie podsumowanie zgłaszanej anomalii;

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 68 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● data zaobserwowania anomalii, zgłaszająca jednostka organizacyjna i autor zgłoszenia (w tym
jego rola);

● identyfikacja przedmiotu testów i środowiska testowego;

● kontekst wystąpienia defektu (np. uruchamiany przypadek testowy, wykonywana czynność
testowa, faza cyklu wytwarzania oprogramowania oraz inne istotne informacje, takie jak stosowana
technika testowania, lista kontrolna czy dane testowe);

● opis awarii umożliwiający jej odtworzenie i usunięcie (w tym kroki testowe, które umożliwiły
wykrycie anomalii) oraz wszelkie istotne dzienniki testów, zrzuty baz danych, zrzuty ekranu lub
nagrania;

● oczekiwane i rzeczywiste rezultaty;

● krytyczność (stopień wpływu) defektu z punktu widzenia interesariuszy lub wymagań;

● priorytet usunięcia;

● status defektu (np. otwarty, odroczony, powielony, oczekujący na poprawkę, oczekujący na
testowanie potwierdzające, ponownie otwarty, zamknięty, odrzucony);

● odwołania do innych elementów (np. do przypadku testowego).

Niektóre z powyższych danych (np. identyfikator, data, autor i początkowy status) mogą zostać

uwzględnione automatycznie w przypadku korzystania z narzędzi do zarządzania defektami. Szablony

raportów o defektach i przykładowe raporty tego typu przedstawiono w standardzie ISO/IEC/IEEE 29119-

3 (raporty o defektach są w nim nazywane raportami o incydentach).

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 69 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

6. Narzędzia testowe — 20 minut

Słowa kluczowe

automatyzacja testów

Cele nauczania w rozdziale 6:

6.1 Narzędzia wspomagające testowanie

FL-6.1.1 (K2) Kandydat wyjaśnia, w jaki sposób różnego typu narzędzia testowe wspomagają
testowanie.

6.2 Korzyści i ryzyka związane z automatyzacją testowania

FL-6.2.1 (K1) Kandydat pamięta korzyści i ryzyka związane z automatyzacją testowania.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 70 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

6.1. Narzędzia wspomagające testowanie

Narzędzia testowe wspomagają i ułatwiają wykonywanie wielu czynności testowych. Dostępne są między

innymi następujące narzędzia:

● narzędzia do zarządzania — zwiększające efektywność procesu testowego poprzez ułatwienie

zarządzania cyklem wytwarzania oprogramowania, wymaganiami, testami, defektami

i konfiguracją;

● narzędzia do testowania statycznego — pomagające testerom w przeprowadzaniu przeglądów

i analizy statycznej;

● narzędzia do projektowania testów i implementacji testów — ułatwiające tworzenie przypadków,

danych i procedur testowych;

● narzędzia do wykonywania testów i pomiaru pokrycia — ułatwiające automatyczne wykonywanie

testów i mierzenie pokrycia;

● narzędzia do testowania niefunkcjonalnego — umożliwiające testerom wykonywanie testów

niefunkcjonalnych, które są trudne lub niemożliwe do wykonania w trybie manualnym;

● narzędzia DevOps — wspomagające działanie potoku dostarczania, śledzenie przepływu pracy,

wykonywanie zautomatyzowanych procesów budowania oraz funkcjonowanie mechanizmów

ciągłej integracji i ciągłego dostarczania w metodyce DevOps;

● narzędzia wspomagające współpracę — ułatwiające wymianę informacji;

● narzędzia zwiększające skalowalność i standaryzację wdrażania (np. maszyny wirtualne lub

narzędzia do konteneryzacji);

● wszelkie inne narzędzia wspomagające testowanie (np. w kontekście testowania narzędziem

testowym może być również arkusz kalkulacyjny).

6.2. Korzyści i ryzyka związane z automatyzacją testów

Sam zakup narzędzia nie gwarantuje jeszcze sukcesu. Osiągnięcie realnych i trwałych korzyści
z wdrożenia nowego narzędzia zawsze wymaga dodatkowego wysiłku (związanego np. z wprowadzeniem
i utrzymaniem takiego narzędzia oraz przeprowadzeniem związanych z nim szkoleń). Ponadto należy
również uwzględnić pewne ryzyka, które wymagają przeanalizowania i złagodzenia.

Potencjalne korzyści wynikające z automatyzacji testów to między innymi:

● oszczędność czasu poprzez ograniczenie powtarzalnych czynności wykonywanych manualnie
(takich jak uruchamianie testów regresji, wielokrotne wprowadzanie tych samych danych
testowych, porównywanie rzeczywistych rezultatów z oczekiwanymi czy sprawdzanie zgodności
ze standardami tworzenia kodu);

● zapobieganie prostym błędom ludzkim poprzez zwiększenie spójności i powtarzalności (np.
poprzez wyprowadzanie testów w spójny sposób z wymagań, systematyczne tworzenie danych
testowych oraz wykonywanie testów przy użyciu narzędzia w tej samej kolejności i z tą samą
częstotliwością);

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 71 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

● bardziej obiektywna ocena (np. w zakresie pokrycia) i przeprowadzanie pomiarów, które są zbyt
skomplikowane, aby mogły zostać określone przez ludzi;

● łatwiejszy dostęp do informacji na temat testowania, które ułatwiają zarządzanie testami
i raportowanie na temat testów (np. danych statystycznych, wykresów i zagregowanych danych
obrazujących postęp testów, współczynników występowania awarii oraz danych dotyczących
czasu trwania wykonywanych testów);

● skrócenie czasu wykonywania testów, co przekłada się na wcześniejsze wykrywanie defektów oraz
szybsze przekazywanie informacji zwrotnych i wprowadzanie produktów na rynek;

● zapewnienie testerom dodatkowego czasu na projektowanie nowych, bardziej wnikliwych
i skuteczniejszych testów.

Do potencjalnych ryzyk związanych z automatyzacją testów należą:

● nierealistyczne oczekiwania co do korzyści wynikających z zastosowania narzędzia (w tym
funkcjonalności i łatwości obsługi);

● niedokładne oszacowanie czasu, kosztów i nakładów pracy związanych z wprowadzeniem
narzędzia, utrzymaniem skryptów testowych oraz zmianą dotychczasowego manualnego procesu
testowego;

● stosowanie narzędzia w sytuacjach, w których lepiej sprawdzi się testowanie manualne;

● nadmierne uzależnienie od narzędzia (np. lekceważenie potrzeby krytycznego myślenia);

● uzależnienie od dostawcy narzędzia, który może zakończyć działalność, wycofać narzędzie lub
sprzedać je innemu dostawcy bądź świadczyć niskiej jakości usługi wsparcia technicznego (np.
w zakresie reagowania na zapytania, dostarczania uaktualnień lub usuwania defektów);

● korzystanie z oprogramowania open source, które może zostać porzucone (co oznacza brak
dalszych aktualizacji) lub którego elementy wewnętrzne mogą wymagać stosunkowo częstych
aktualizacji w związku z dalszymi pracami rozwojowymi;

● brak kompatybilności narzędzia do automatyzacji z daną platformą programistyczną;

● wybór nieodpowiedniego narzędzia, które nie spełnia wymogów prawnych i/lub norm
bezpieczeństwa.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 72 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

7. Bibliografia

Normy i standardy

ISO/IEC/IEEE 29119-1 (2022) Software and systems engineering — Software testing — Part 1: General
Concepts

ISO/IEC/IEEE 29119-2 (2021) Software and systems engineering — Software testing — Part 2: Test
processes

ISO/IEC/IEEE 29119-3 (2021) Software and systems engineering — Software testing — Part 3: Test
documentation

ISO/IEC/IEEE 29119-4 (2021) Software and systems engineering — Software testing — Part 4: Test
techniques

ISO/IEC 25010, (2011) Systems and software engineering — Systems and software Quality Requirements
and Evaluation (SQuaRE) System and software quality models

ISO/IEC 20246: (2017) Software and systems engineering — Work product reviews

ISO/IEC/IEEE 14764:2022 — Software engineering — Software life cycle processes — Maintenance

ISO 31000 (2018) Risk management — Principles and guidelines

Książki

Adzic, G. (2009) Bridging the Communication Gap: Specification by Example and Agile Acceptance
Testing, Neuri Limited

Ammann, P., Offutt, J. (2016) Introduction to Software Testing (wyd. 2), Cambridge University Press

Andrews, M., Whittaker, J. (2006) How to Break Web Software: Functional and Security Testing of Web
Applications and Web Services, Addison-Wesley Professional

Beck, K. (2003) Test Driven Development: By Example, Addison-Wesley

Beizer, B. (1990) Software Testing Techniques (wyd. 2), Van Nostrand Reinhold: Boston, MA

Boehm, B. (1981) Software Engineering Economics, Prentice Hall: Englewood Cliffs, NJ

Buxton, J. N., Randell B. (red.) (1970) Software Engineering Techniques. Report on a conference
sponsored by the NATO Science Committee, Rome, Italy, 27–31 October 1969, s. 16

Chelimsky, D. i in. (2010) The Rspec Book: Behaviour Driven Development with Rspec, Cucumber, and
Friends, The Pragmatic Bookshelf: Raleigh, NC

Cohn, M. (2009) Succeeding with Agile: Software Development Using Scrum, Addison-Wesley

Copeland, L. (2004) A Practitioner’s Guide to Software Test Design, Artech House: Norwood, MA

Craig, R., Jaskiel, S. (2002) Systematic Software Testing, Artech House: Norwood, MA

Crispin, L., Gregory, J. (2008) Agile Testing: A Practical Guide for Testers and Agile Teams, Pearson
Education: Boston, MA

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 73 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Forgács, I., Kovács, A. (2019) Practical Test Design: Selection of traditional and automated test design

techniques, BCS, The Chartered Institute for IT

Gawande, A. (2009) The Checklist Manifesto: How to Get Things Right, Metropolitan Books: New York, NY

Gärtner, M. (2011) ATDD by Example: A Practical Guide to Acceptance Test-Driven Development, Pearson
Education: Boston, MA

Gilb, T., Graham, D. (1993) Software Inspection, Addison-Wesley

Hendrickson, E. (2013) Explore It!: Reduce Risk and Increase Confidence with Exploratory Testing, The
Pragmatic Programmers

Hetzel, B. (1988) The Complete Guide to Software Testing (wyd. 2), John Wiley and Sons

Jeffries, R., Anderson, A., Hendrickson, C. (2000) Extreme Programming Installed, Addison-Wesley
Professional

Jorgensen, P. (2014) Software Testing, A Craftsman’s Approach (wyd. 4), CRC Press: Boca Raton, FL

Kan, S. (2003) Metrics and Models in Software Quality Engineering (wyd. 2), Addison-Wesley, polskie
wydanie: (2006) Metryki i modele w inżynierii jakości oprogramowania, Mikom

Kaner, C., Falk, J., Nguyen, H. Q. (1999) Testing Computer Software (wyd. 2), Wiley Computer Publishing

Kaner, C., Bach, J., Pettichord, B. (2011) Lessons Learned in Software Testing: A Context-Driven Approach

(wyd. 1), Wiley Computer Publishing

Kim, G., Humble, J., Debois, P., Willis, J. (2016) The DevOps Handbook, IT Revolution Press: Portland,
OR

Koomen, T., van der Aalst, L., Broekman, B., Vroon, M. (2006) TMap Next for result-driven testing, UTN
Publishers

Myers, G. (2011) The Art of Software Testing (wyd. 3), John Wiley & Sons: New York, NY, polskie wydanie:
(2005) Sztuka testowania oprogramowania, Helion

O’Regan, G. (2019) Concise Guide to Software Testing, Springer Nature Switzerland

Pressman, R. S. (2019) Software Engineering. A Practitioner’s Approach (wyd. 9), McGraw Hill, polskie
wydanie: (2010) Praktyczne podejście do inżynierii oprogramowania, WNT

Roman, A. (2018) Thinking-Driven Testing. The Most Reasonable Approach to Quality Control, Springer
Nature Switzerland

Van Veenendaal, E. (red.) (2012) Practical Risk-Based Testing: The PRISMA Approach, UTN Publishers

Watson, A. H., Wallace, D. R., McCabe, T. J. (1996) Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric, U.S. Dept. of Commerce, Technology Administration, NIST

Westfall, L. (2009) The Certified Software Quality Engineer Handbook, ASQ Quality Press

Whittaker, J. (2002) How to Break Software: A Practical Guide to Testing, Pearson

Whittaker, J. (2009) Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test
Design, Addison-Wesley

Whittaker, J., Thompson, H. (2003) How to Break Software Security, Addison-Wesley

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 74 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Wiegers, K. (2001) Peer Reviews in Software: A Practical Guide, Addison-Wesley Professional

Artykuły i strony internetowe

Brykczynski, B. (1999) „A survey of software inspection checklists”, ACM SIGSOFT Software Engineering
Notes 24(1), s. 82–89

Enders, A. (1975) „An Analysis of Errors and Their Causes in System Programs”, IEEE Transactions on
Software Engineering 1(2), s. 140–149

Manna, Z., Waldinger, R. (1978) “The logic of computer programming”, IEEE Transactions on Software
Engineering 4(3), s. 199–229

Marick, B. (2003) „Exploration through Example”, http://www.exampler.com/old-
blog/2003/08/21.1.html#agile-testing-project-1

Nielsen, J. (1994) „Enhancing the explanatory power of usability heuristics”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: Celebrating Interdependence, ACM Press, s. 152–
158

Salman. I. (2016) „Cognitive biases in software quality and testing”, Proceedings of the 38th International
Conference on Software Engineering Companion (ICSE '16), ACM Press, s. 823–826

Wake, B. (2003) „INVEST in Good Stories, and SMART Tasks”, https://xp123.com/articles/invest-in-good-
stories-and-smart-tasks/

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 75 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

8. Załącznik A. Cele nauczania i poziomy poznawcze

Poniżej przedstawiono cele nauczania obowiązujące w przypadku niniejszego sylabusa. Znajomość
każdego z zagadnień poruszonych w sylabusie będzie sprawdzana na egzaminie zgodnie z przypisanym
celem nauczania. Opis celu nauczania zawiera czasownik wyrażający czynność, który odpowiada
właściwemu poziomowi wiedzy wymienionemu poniżej.

Poziom 1 — zapamiętać (K1): Kandydat pamięta, rozpoznaje lub umie sobie przypomnieć dany termin

lub dane pojęcie.

Czynności: pamiętać, rozpoznać, określić, wskazać.

Przykłady:

● „Kandydat wskazuje typowe cele testów”.

● „Kandydat pamięta pojęcia związane z piramidą testów”.

● „Kandydat rozpoznaje, jaki jest wkład testera w planowanie iteracji i wydań”.

Poziom 2 — zrozumieć (K2): Kandydat potrafi uzasadnić lub wyjaśnić stwierdzenia dotyczące danego

zagadnienia, a także podsumować, porównać i sklasyfikować pojęcia z zakresu testów oraz podać

odpowiednie przykłady.

Czynności: sklasyfikować, porównać, zestawić ze sobą, objaśnić, wyjaśnić, omówić, rozróżnić, odróżnić,
wyjaśnić, podać przykłady, podsumować.

Przykłady:

● „Kandydat klasyfikuje różne sposoby pisania kryteriów akceptacji”.

● „Kandydat porównuje poszczególne role występujące w testowaniu”.

● „Kandydat rozróżnia ryzyka projektowe i produktowe”.

● „Kandydat omawia na przykładach cel i treść planu testów”.

● „Kandydat wyjaśnia wpływ wybranego modelu cyklu wytwarzania oprogramowania na testowanie”.

● „Kandydat podsumowuje czynności wykonywane w ramach procesu przeglądu”.

Poziom 3 — zastosować (K3): Kandydat potrafi wykonać odpowiednią procedurę, gdy zostanie mu

postawione znane mu zadanie, bądź wybrać właściwą procedurę i zastosować ją w danym kontekście.

Czynności: zastosować, obliczyć, sporządzić, użyć.

Przykłady:

● „Kandydat stosuje priorytetyzację przypadków testowych”.

● „Kandydat sporządza raport o defekcie”.

● „Kandydat używa techniki analizy wartości brzegowych, aby zaprojektować przypadki testowe”.

Materiały dodatkowe w zakresie poziomów poznawczych celów nauczania:

Anderson, L. W., Krathwohl, D. R. (red.) (2001) A Taxonomy for Learning, Teaching, and Assessing:
A Revision of Bloom’s Taxonomy of Educational Objectives, Allyn & Bacon

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 76 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

9. Załącznik B. Macierz powiązań między celami biznesowymi a celami nauczania

W tym rozdziale wskazano numery celów nauczania na poziomie podstawowym związanych z celami biznesowymi oraz przedstawiono powiązania
między celami biznesowymi a celami nauczania na poziomie podstawowym.

Cele biznesowe — poziom podstawowy
FL-
BO
1

FL-
BO
2

FL-
BO
3

FL-
BO
4

FL-
BO
5

FL-
BO
6

FL-
BO
7

FL-
BO
8

FL-
BO
9

FL-
BO
10

FL-
BO
11

FL-
BO
12

FL-
BO
13

FL-
BO
14

BO1 Znajomość istoty testowania i wynikających z niego korzyści 6

BO2
Znajomość podstawowych pojęć związanych z testowaniem
oprogramowania

 22

BO3
Identyfikowanie podejścia do testowania i czynności testowych, które
mają być realizowane w zależności od kontekstu testowania

 6

BO4 Dokonywanie oceny i podnoszenie jakości dokumentacji 9

BO5 Zwiększanie skuteczności i efektywności testowania 20

BO6
Dopasowywanie procesu testowego do cyklu wytwarzania
oprogramowania

 6

BO7 Znajomość zasad zarządzania testami 6

BO8
Sporządzanie i udostępnianie przejrzystych, zrozumiałych raportów
o defektach

 1

BO9
Znajomość czynników wpływających na priorytety i pracochłonność
testowania

 7

BO10 Praca w zespole interdyscyplinarnym 8

BO11 Znajomość ryzyk i korzyści związanych z automatyzacją testów 1

BO12
Identyfikowanie niezbędnych umiejętności wymaganych w związku
z testowaniem

 5

BO13 Znajomość wpływu ryzyka na testowanie 4

BO14 Sprawne raportowanie na temat postępu i jakości testów 4

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 77 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Rozdział/
podrozdział/
sekcja

Cel nauczania

P
o

zi
o

m
 w

ie
d

zy

(„
K

”
)

CELE BIZNESOWE

FL
-B

O
1

FL
-B

O
2

FL
-B

O
3

FL
-B

O
4

FL
-B

O
5

FL
-B

O
6

FL
-B

O
7

FL
-B

O
8

FL
-B

O
9

FL
-B

O
1

0

FL
-B

O
1

1

FL
-B

O
1

2

FL
-B

O
1

3

FL
-B

O
1

4

Rozdział 1 Podstawy testowania

1.1 Co to jest testowanie?

1.1.1 Kandydat wskazuje typowe cele testów. K1 X

1.1.2 Kandydat odróżnia testowanie od debugowania. K2 X

1.2 Dlaczego testowanie jest niezbędne?

1.2.1 Kandydat podaje przykłady wskazujące, dlaczego testowanie jest niezbędne. K2 X

1.2.2 Kandydat pamięta, jaka jest relacja między testowaniem a zapewnieniem jakości. K1 X

1.2.3 Kandydat odróżnia podstawową przyczynę, pomyłkę, defekt i awarię. K2 X

1.3 Zasady testowania

1.3.1 Kandydat objaśnia siedem zasad testowania. K2 X

1.4 Czynności testowe, testalia i role związane z testami

1.4.1 Kandydat podsumowuje poszczególne czynności i zadania testowe. K2 X

1.4.2 Kandydat wyjaśnia wpływ kontekstu na proces testowy. K2 X X

1.4.3 Kandydat rozróżnia testalia wspomagające czynności testowe. K2 X

1.4.4 Kandydat wyjaśnia korzyści wynikające ze śledzenia powiązań. K2 X X

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 78 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

1.4.5 Kandydat porównuje poszczególne role występujące w testowaniu. K2 X

1.5 Niezbędne umiejętności i dobre praktyki w dziedzinie testowania

1.5.1 Kandydat podaje przykłady ogólnych umiejętności wymaganych w testowaniu. K2 X

1.5.2 Kandydat pamięta, jakie są zalety podejścia „cały zespół”. K1 X

1.5.3 Kandydat omawia korzyści i wady niezależności testowania. K2 X

Rozdział 2 Testowanie w cyklu wytwarzania oprogramowania

2.1 Testowanie w kontekście cyklu wytwarzania oprogramowania

2.1.1
Kandydat wyjaśnia wpływ wybranego modelu cyklu wytwarzania oprogramowania na
testowanie.

K2
 X

2.1.2
Kandydat pamięta dobre praktyki testowania mające zastosowanie do wszystkich
modeli cyklu wytwarzania oprogramowania.

K1
 X

2.1.3
Kandydat podaje przykłady podejść typu „najpierw test” w kontekście wytwarzania
oprogramowania.

K1
 X

2.1.4
Kandydat podsumowuje, w jaki sposób metodyka DevOps może wpłynąć na
testowanie.

K2
 X X X X

2.1.5 Kandydat wyjaśnia, na czym polega przesunięcie w lewo. K2 X X

2.1.6
Kandydat wyjaśnia, w jaki sposób retrospektywy mogą posłużyć jako mechanizmy
doskonalenia procesów.

K2
 X X

2.2 Poziomy testów i typy testów

2.2.1 Kandydat rozróżnia poszczególne poziomy testów. K2 X X

2.2.2 Kandydat rozróżnia poszczególne typy testów. K2 X

2.2.3 Kandydat odróżnia testowanie potwierdzające od testowania regresji. K2 X

2.3 Testowanie pielęgnacyjne

2.3.1 Kandydat podsumowuje testowanie pielęgnacyjne i zdarzenia je wyzwalające. K2 X X

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 79 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Rozdział 3 Testowanie statyczne

3.1 Podstawy testowania statycznego

3.1.1
Kandydat rozpoznaje typy produktów, które mogą być badane przy użyciu
poszczególnych technik testowania statycznego.

K1
 X X

3.1.2 Kandydat wyjaśnia korzyści wynikające z testowania statycznego. K2 X X X

3.1.3 Kandydat porównuje i zestawia ze sobą testowanie statyczne i dynamiczne. K2 X X

3.2 Informacje zwrotne i proces przeglądu

3.2.1
Kandydat pamięta korzyści wynikające z wczesnego i częstego otrzymywania
informacji zwrotnych od interesariuszy.

K1
X X X

3.2.2 Kandydat podsumowuje czynności wykonywane w ramach procesu przeglądu. K2 X X

3.2.3
Kandydat pamięta, jakie obowiązki są przypisane do najważniejszych ról w trakcie
wykonywania przeglądów.

K1
 X X

3.2.4 Kandydat porównuje i zestawia ze sobą różne typy przeglądów. K2 X

3.2.5 Kandydat pamięta, jakie czynniki decydują o powodzeniu przeglądu. K1 X X

Rozdział 4 Analiza i projektowanie testów

4.1 Ogólna charakterystyka technik testowania

4.1.1
Kandydat rozróżnia czarnoskrzynkowe i białoskrzynkowe techniki testowania oraz
techniki testowania oparte na doświadczeniu.

K2
 X

4.2 Czarnoskrzynkowe techniki testowania

4.2.1
Kandydat używa techniki podziału na klasy równoważności, aby zaprojektować
przypadki testowe.

K3
 X

4.2.2
Kandydat używa techniki analizy wartości brzegowych, aby zaprojektować przypadki
testowe.

K3
 X

4.2.3
Kandydat używa techniki testowania w oparciu o tablicę decyzyjną, aby
zaprojektować przypadki testowe.

K3
 X

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 80 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

4.2.4
Kandydat używa techniki testowania przejść pomiędzy stanami, aby zaprojektować
przypadki testowe.

K3
 X

4.3 Białoskrzynkowe techniki testowania

4.3.1 Kandydat wyjaśnia pojęcie testowanie instrukcji. K2 X

4.3.2 Kandydat wyjaśnia pojęcie testowanie gałęzi. K2 X

4.3.3 Kandydat wyjaśnia korzyści wynikające z testowania białoskrzynkowego. K2 X X

4.4 Techniki testowania oparte na doświadczeniu

4.4.1 Kandydat wyjaśnia pojęcie zgadywanie błędów. K2 X

4.4.2 Kandydat wyjaśnia pojęcie testowanie eksploracyjne. K2 X

4.4.3 Kandydat wyjaśnia pojęcie testowanie w oparciu o listę kontrolną. K2 X

4.5 Podejścia do testowania oparte na współpracy

4.5.1
Kandydat wyjaśnia, w jaki sposób należy pisać historyjki użytkownika we współpracy
z programistami i przedstawicielami jednostek biznesowych.

K2
 X X

4.5.2 Kandydat klasyfikuje różne sposoby pisania kryteriów akceptacji. K2 X

4.5.3
Kandydat używa metody wytwarzania sterowanego testami akceptacyjnymi (ATDD),
aby zaprojektować przypadki testowe.

K3
 X

Rozdział 5 Zarządzanie czynnościami testowymi

5.1 Planowanie testów

5.1.1 Kandydat omawia na przykładach cel i treść planu testów. K2 X X

5.1.2 Kandydat rozpoznaje, jaki jest wkład testera w planowanie iteracji i wydań. K1 X X X

5.1.3 Kandydat porównuje i zestawia ze sobą kryteria wejścia i kryteria wyjścia. K2 X X X

5.1.4 Kandydat oblicza pracochłonność testowania przy użyciu technik szacowania. K3 X X

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 81 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

5.1.5 Kandydat stosuje priorytetyzację przypadków testowych. K3 X X

5.1.6 Kandydat pamięta pojęcia związane z piramidą testów. K1 X

5.1.7
Kandydat podsumowuje kwadranty testowe oraz ich relację do poziomów testów
i typów testów.

K2
 X X

5.2 Zarządzanie ryzykiem

5.2.1
Kandydat określa poziom ryzyka na podstawie prawdopodobieństwa ryzyka i wpływu
ryzyka.

K1
 X X

5.2.2 Kandydat rozróżnia ryzyka projektowe i produktowe. K2 X X

5.2.3
Kandydat wyjaśnia potencjalny wpływ analizy ryzyka produktowego na staranność
i zakres testów.

K2
 X X X

5.2.4
Kandydat wyjaśnia, jakie środki można podjąć w odpowiedzi na przeanalizowane
ryzyka produktowe.

K2
 X X X

5.3 Monitorowanie testów, nadzór nad testami i ukończenie testów

5.3.1 Kandydat pamięta metryki stosowane w odniesieniu do testowania. K1 X X

5.3.2 Kandydat podsumowuje cele i treść raportów z testów oraz wskazuje ich odbiorców. K2 X X X

5.3.3
Kandydat omawia na przykładach sposób przekazywania informacji o statusie
testowania.

K2
 X X

5.4 Zarządzanie konfiguracją

5.4.1
Kandydat podsumowuje, w jaki sposób zarządzanie konfiguracją wspomaga
testowanie.

K2
 X X

5.5 Zarządzanie defektami

5.5.1 Kandydat sporządza raport o defekcie. K3 X X

Rozdział 6 Narzędzia testowe

6.1 Narzędzia wspomagające testowanie

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 82 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

6.1.1
Kandydat wyjaśnia, w jaki sposób różnego typu narzędzia testowe wspomagają
testowanie.

K2
 X

6.2 Korzyści i ryzyka związane z automatyzacją testowania

6.2.1 Kandydat pamięta korzyści i ryzyka związane z automatyzacją testowania. K1 X X

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 83 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

10. Załącznik C. Opis wydania

Wersja 4.0.1 stanowi poprawkę do sylabusa poziomu podstawowego ISTQB® w wersji 4.0. Poprawa
zawiera następujące zmiany.

Zmiany w treści Celów Nauczania, aby dostosować je do terminów słownika

• FL-1.4.1: Kandydat podsumowuje poszczególne czynności i zadania testowe -> Kandydat wyjaśnia
poszczególne czynności i powiązane zadania testowe

• FL-2.1.5: Kandydat wyjaśnia, na czym polega przesunięcie w lewo -> Kandydat wyjaśnia
przesunięcie w lewo

• FL-3.1.1: Kandydat rozpoznaje typy produktów, które mogą być badane przy użyciu
poszczególnych technik testowania statycznego -> Kandydat rozpoznaje typy produktów pracy,
które mogą być badane przy użyciu technik testowania statycznego

• FL-3.1.3: Kandydat porównuje i zestawia ze sobą testowanie statyczne i dynamiczne. -> Kandydat
porównuje i zestawia ze sobą testowanie statyczne i testowanie dynamiczne

• FL-4.1.1: Kandydat rozróżnia czarnoskrzynkowe i białoskrzynkowe techniki testowania oraz
techniki testowania oparte na doświadczeniu. -> Kandydat rozróżnia czarnoskrzynkowe techniki
testowania, białoskrzynkowe techniki testowania oraz techniki testowania w oparciu o
doświadczenie

• FL-5.2.3: Kandydat wyjaśnia potencjalny wpływ analizy ryzyka produktowego na staranność i
zakres testowania. -> Kandydat wyjaśnia potencjalny wpływ analizy ryzyka produktowego na
staranność i zakres testów

Zmiany tekstu w celu dostosowania do pojęć słownikowych (artefakty, dokumentacja -> produkty
pracy, cele, cele testowania, cele projektu testowego -> cel testów, monitorowanie i kontrola testów ->
monitorowanie testów i nadzór nad testami, dokumentacja testowa -> testalia, iteracyjne i przyrostowe
modele wytwarzania -> iteracyjne modele wytwarzania i przyrostowe modele wytwarzania, charakterystyka
jakości oprogramowania -> charakterystyka jakości, niezależność testów -> niezależność testowania, etap
-> faza, moduł i testowanie integracji modułów -> testowanie modułowe i testowanie integracji modułów,
testy akceptacyjne zgodności z umową i zgodności z prawem -> testy akceptacyjne zgodności z umową i
testy akceptacyjne zgodności z prawem, kryterium wejścia/wyjścia -> kryterium wejścia i kryterium wyjścia,
polityka testowa obowiązująca w organizacji -> polityka testów, podejście przesunięcia w lewo, strategia
przesunięcia w lewo -> przesunięcie w lewo, etap testowania -> czynność testowa, raportowanie postępu
testów -> raportowanie na temat postępu testów, raportowanie testów zakończonego projektu ->
raportowanie ukończenia testów, fałszywie pozytywne -> rezultat fałszywie pozytywny, krok -> krok
testowy, zakres testowania -> zakres testów, narzędzia do projektowania i implementacji testów ->
narzędzia do projektowania testów i implementacji testów, testowanie statyczne i dynamiczne -> testowanie
statyczne i testowanie dynamiczne).

Aktualizacja normy ISO 25010. Nowa wersja normy ISO 25010 została opublikowana w 2023 roku.
Zmieniono w niej nazwy „użyteczność” na „zdolność do interakcji”, „przenaszalność” na „elastyczność” i
dodano nową cechę „bezpieczeństwo”. Sylabus pozostaje przy oryginalnych nazwach charakterystyk, ale
dodajemy nowe nazwy użyteczności i przenaszalność w sekcji 2.2.2

Dodano trzy słowa kluczowe (proces testowy i śledzenie powiązań w Rozdziale 1, strategia testów w
Rozdziale 5)

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 84 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Poprawki w tekście

• w 1.1.2 słowa „przyczyna” i „podstawowa przyczyna” zastąpiono słowem „defekt”

• w 1.4.1 opis czynności stał się bardziej przejrzysty i jednoznaczny

• w 1.4.3 „skrypty testów automatycznych” zmieniono na „skrypty testów automatycznych i
manualnych”

• w 1.4.4 usunięto słowo wykrytymi z „wykrytymi defektami”

• w 1.2.2 „kontrola jakości” zastąpiono słowem „testowanie”, ponieważ sekcja porównuje
zapewnienie jakości z testowaniem, a nie z kontrolę jakości

• w 2.1.3 „Następnie przypadki testowe są automatycznie przekładane” zastąpiono słowami
„Następnie przypadki testowe powinny być automatycznie przekładane” w kontekście wytwarzania
sterowania zachowaniem

• w 2.1.5 „z punktu widzenia testowania” zmieniono na „z punktu widzenia testerów”

• w 2.1.6 usunięto „zwane także spotkaniami poprojektowymi lub retrospektywami projektu”

• w 2.2.2 zmieniono opis podstawy testów z „dokumentacji zewnętrznej wobec przedmiotu testów.”
na „dokumentacji niezwiązanej z wewnętrzną strukturą przedmiotu testów”, aby lepiej pokazać
kontrast między testowaniem czarnoskrzynkowym a testowaniem białoskrzynkowym. Usunęliśmy
również test systemów jako przykład rozpoczęcia na wczesnym etapie cyklu wytwarzania
oprogramowania

• w 3.1 przedstawiciele biznesowi zostali określeni bardziej szczegółowo

• w 3.1.2 dodano „określone” do zdania „Analiza statyczna pozwala wykrywać defekty kodu bardziej
efektywnie niż testowanie dynamiczne”. Poprzedni tekst sugerował, że dotyczy to wszystkich
możliwych defektów kodu

• w 3.2.2 słowa „kilkakrotnie” zastąpiono słowami „wielokrotnie”, ponieważ w przypadku dużych
dokumentów kilka razy to za mało

• w 4.2.1 „przedmiot testów” zastąpiono terminem „element testowy”, ponieważ jest to właściwy
termin w kontekście stosowania technik testowych

• w 4.2.4 „stany odwiedzone” zastąpiono „stanami wykonanymi”, ponieważ „wykonanie” jest
właściwym terminem w kontekście pokrywania elementów modelu przypadkami testowymi

• w 4.2.4 „diagram przejścia pomiędzy stanami” zastąpiono słowem „diagram stanów”, ponieważ jest
to powszechna nazwa tego modelu w informatyce, a także w celu zachowania spójności z
programem nauczania testowania opartego na modelach

• w 5.1.1 usunięto „ograniczenia” w pierwszym wypunktowaniu, ograniczenia są głównym tematem
drugiego wypunktowania

• w 5.1.3 „kryteria ukończenia” są używane w kontekście binarnych kryteriów „tak/nie”, a nie jako
synonim „kryteriów wyjścia”, więc odpowiedni termin został zmieniony

• w 5.1.6 poprawiono relację między warstwami piramidy testów a poziomami izolacji testów (im
wyższa warstwa, tym niższa izolacja testów). Ponadto zastąpiliśmy „należytego pokrycia”
„należytego poziomu pokrycia”

• w 5.5 „anomalii” zamieniliśmy na „defektów lub anomalii”

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 85 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

• w 6.2 „współczynników występowania defektów” zastąpiliśmy „wskaźnikiem awarii”, a „które są
zbyt skomplikowane, aby mogły zostać dokonane przez ludzi” zastąpiliśmy „które są zbyt
skomplikowane, aby mogły zostać określone przez ludzi”

Ponadto poprawiono kilka literówek i ujednolicono niektóre terminy w całym sylabusie (np. dokonywać ->
wykonywać).

INFORMACJA O WERSJI 4.0

Wersja 4.0 stanowi istotną aktualizację sylabusa poziomu podstawowego ISTQB® opracowaną na
podstawie sylabusa poziomu podstawowego w wersji 3.1.1 oraz sylabusa dla testerów zwinnych w wersji
2014. W związku z tym nie sporządzono szczegółowego opisu wydania w podziale na rozdziały
i podrozdziały, a jedynie przedstawiono podsumowanie najważniejszych zmian. Ponadto w oddzielnym
dokumencie z opisem wydania przedstawiono powiązania między celami nauczania sylabusa poziomu
podstawowego w wersji 3.1.1 i sylabusa dla testerów zwinnych w wersji 2014 a celami nauczania w nowym
sylabusie poziomu podstawowego w wersji 4.0 (ze wskazaniem celów dodanych, zaktualizowanych lub
usuniętych).

Do momentu powstania niniejszego sylabusa (tj. do przełomu lat 2022 i 2023) do egzaminu na poziomie
podstawowym przystąpiło ponad milion osób z ponad 100 krajów, a liczba certyfikowanych testerów na
całym świecie przekroczyła 800 tys. Przy założeniu, że wszystkie te osoby przeczytały sylabus poziomu
podstawowego, aby zdać egzamin, dokument ten jest prawdopodobnie najczęściej czytanym
opracowaniem dotyczącym testowania oprogramowania! Obecna, gruntownie zaktualizowana wersja
czerpie z tego dziedzictwa, a jednocześnie pozwala jeszcze lepiej zaprezentować jakość usług, które
ISTQB® oferuje globalnej społeczności testerów, kolejnym setkom tysięcy odbiorców.

W bieżącej wersji wszystkie cele nauczania zostały przeredagowane w taki sposób, aby każdy z nich
stanowił niepodzielną całość oraz aby można było jednoznacznie powiązać cele nauczania z treścią
podrozdziałów sylabusa. Zadbano też o to, aby sylabus nie zawierał treści niepowiązanych z żadnymi
celami nauczania. Autorzy skupili się na możliwości praktycznego wykorzystania przedstawionych treści
oraz na równowadze między wiedzą a umiejętnościami, dzięki czemu nowa wersja powinna być bardziej
przystępna i zrozumiała oraz łatwiejsza do przetłumaczenia, a zawarty w niej materiał — łatwiejszy do
opanowania.

W bieżącym wydaniu głównym wprowadzono następujące zmiany:

● Zmniejszono objętość całego sylabusa. Sylabus nie jest podręcznikiem, lecz dokumentem
mającym na celu przedstawienie w skrócie podstawowych elementów kursu wprowadzającego do
tematyki testowania oprogramowania, w tym wskazanie, jakie tematy należy poruszyć i na jakim
poziomie. W szczególności:

o z tekstu usunięto w większości przypadków przykłady, ponieważ przygotowanie
przykładów i ćwiczeń do wykorzystania w trakcie kursu jest zadaniem dostawcy szkoleń;

o zastosowano „listę kontrolną pisania sylabusów”, która określa sugerowaną maksymalną
objętość tekstu (w j. angielskim) poszczególnych celów nauczania na poszczególnych
poziomach wiedzy (K1 = maks. 10 wierszy, K2 = maks. 15 wierszy, K3 = maks.
25 wierszy).

● Zmniejszono liczbę celów nauczania (LO - Learning Objectives) w porównaniu z sylabusem
poziomu podstawowego w wersji 3.1.1 oraz sylabusem dla testerów zwinnych w wersji 2014:

o 14 LO na poziomie K1 w porównaniu z 21 LO w sylabusie poziomu podstawowego
w wersji 3.1.1 (15) i sylabusie dla testerów zwinnych w wersji 2014 (6);

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 86 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

o 42 LO na poziomie K2 w porównaniu z 53 LO w sylabusie poziomu podstawowego
w wersji 3.1.1 (40) i sylabusie dla testerów zwinnych w wersji 2014 (13);

o 8 LO na poziomie K3 w porównaniu z 15 LO w sylabusie poziomu podstawowego
w wersji 3.1.1 (7) i sylabusie dla testerów zwinnych w wersji 2014 (8).

● Zwiększono liczbę odwołań do klasycznych i/lub powszechnie uznanych książek i artykułów na
temat testowania oprogramowania i zagadnień pokrewnych.

● Istotne zmiany w rozdziale 1 (Podstawy testowania):

o Rozszerzono i poprawiono podrozdział dotyczący umiejętności w dziedzinie testowania.

o Dodano sekcję dotyczącą podejścia opartego na zaangażowaniu całego zespołu (K1).

o Przeniesiono sekcję dotyczącą niezależności testowania z rozdziału 5 do rozdziału 1.

● Istotne zmiany w rozdziale 2 (Testowanie w cyklu wytwarzania oprogramowania):

o Przeredagowano i poprawiono treść sekcji 2.1.1 i 2.1.2 oraz zmodyfikowano
odpowiadające im LO.

o Poświęcono więcej uwagi praktykom takim jak podejście „najpierw test” (K1), przesunięcie
w lewo (K2) czy retrospektywa (K2).

o Dodano nową sekcję dotyczącą testowania w kontekście metodyki DevOps (K2).

o Podzielono testowanie integracyjne na dwa oddzielne poziomy testów: testowanie
integracji modułów i testowanie integracji systemów.

● Istotne zmiany w rozdziale 3 (Testowanie statyczne):

o Usunięto sekcję dotyczącą technik przeglądu wraz z LO na poziomie K3 (stosowanie
technik przeglądu).

● Istotne zmiany w rozdziale 4 (Analiza i projektowanie testów):

o Usunięto treść dotyczącą testowania opartego na przypadkach użycia (treść ta jest nadal
dostępna w sylabusie dla analityków testów na poziomie zaawansowanym).

o Poświęcono więcej uwagi podejściu opartemu na współpracy poprzez dodanie nowego LO
na poziomie K3 dotyczącego projektowania przypadków testowych metodą ATDD oraz
dwóch nowych LO na poziomie K2 dotyczących historyjek użytkownika i kryteriów
akceptacji.

o Materiał dotyczący testowania i pokrycia decyzji zastąpiono materiałem dotyczącym
testowania i pokrycia gałęzi. Wynika to z faktu, że: po pierwsze, pokrycie gałęzi jest
częściej stosowane w praktyce; po drugie, różne standardy różnie definiują pojęcie
„decyzji” (inaczej niż w przypadku „gałęzi”); po trzecie, pozwala to usunąć subtelną, ale
poważną wadę występującą w dotychczasowym sylabusie poziomu podstawowego
z 2018 r., w którym napisano, że „uzyskanie stuprocentowego pokrycia decyzji gwarantuje
stuprocentowe pokrycie instrukcji kodu”, co nie jest prawdą w przypadku programów,
w których nie występują decyzje.

o Poprawiono podrozdział dotyczący korzyści wynikających z testowania
białoskrzynkowego.

● Istotne zmiany w rozdziale 5 (Zarządzanie czynnościami testowymi):

o Usunięto sekcję dotyczącą strategii testów i podejść do testowania.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 87 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

o Dodano nowy LO na poziomie K3 dotyczący technik szacowania pracochłonności
testowania.

o Omówiono szerzej dobrze znane pojęcia i narzędzia związane ze zwinnym wytwarzaniem
oprogramowania w kontekście zarządzania testami: planowanie iteracji i wydań (K1),
piramidę testów (K1) i kwadranty testowe (K2).

o Poprawiono strukturę podrozdziału dotyczącego zarządzania ryzykiem poprzez opisanie
czterech głównych czynności, czyli: identyfikacji ryzyka, oceny ryzyka, łagodzenia ryzyka
i monitorowania ryzyka.

● Istotne zmiany w rozdziale 6 (Narzędzia testowe):

o Okrojono materiał dotyczący niektórych kwestii związanych z automatyzacją testów, który
był zbyt zaawansowany jak na poziom podstawowy, w tym usunięto sekcje dotyczące
wyboru narzędzi, przeprowadzania projektów pilotażowych i wprowadzania narzędzi
w organizacji.

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 88 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

11. Indeks

A

analiza ryzyka produktowego, 64
analiza statyczna, 32, 39
analiza testów, 22, 30
analiza wartości brzegowych, 47
analiza wpływu, 36, 37
anomalia, 42, 68
atak usterek, 53
automatyzacja testów, 32, 71
autor (przegląd), 42
awaria, 19, 40

B

bezpieczeństwo, 35
białoskrzynkowa technika testowania, 46, 50
błąd, Patrz pomyłka

C

cel testów, 17, 30, 58
charakterystyka jakościowa, 40
ciągła integracja, 31
ciągłe doskonalenie, 33
ciągłe dostarczanie, 31
ciągłe testowanie, 22
cykl wytwarzania oprogramowania, 29
czarnoskrzynkowa technika testowania, 46

D

dane testowe, 22, 24
debugowanie, 18
defekt, 19, 39, 40, 68
DevOps, 31, 68
diagram przejść pomiędzy stanami, 49
diagram przepływu sterowania, 52
dwupunktowa analiza wartości brzegowych, 48
dyrektywa nadzoru, 23
dziennik testów, 24

E

each choice, 47
efekt potwierdzenia, 26
ekstrapolacja, 60

elastyczność, 35
element konfiguracji, 68
element pokrycia, 22, 24, 47, 48, 49, 50, 51, 54

F

funkcjonalna adekwatność, 35
funkcjonalna kompletność, 35
funkcjonalna poprawność, 35

G

gałąź, 51
gałąź bezwarunkowa, 51
gałąź warunkowa, 51
Given/When/Then, 31, 55
graf przepływu sterowania, 51

H

harmonogram testów, 23
harmonogram wykonywania testów, 22, 24, 61
historyjka użytkownika, 55

I

identyfikacja ryzyka, 64
implementacja testów, 22
informacja zwrotna, 41, 44
inspekcja, 43
instrukcja, 51
instrukcja wykonywalna, 51
INVEST, 55
iteracyjny model wytwarzania oprogramowania, 29

J

jakość, 17, 19
jarzmo testowe, 34

K

Kanban, 29
karta opisu testów, 24, 53
kierownik (przegląd), 42
kompatybilność, 35
konfiguracja bazowa, 68
kontrola jakości, 18, 19
kontrola ryzyka, 64
kryteria akceptacji, 23, 55
kryteria wejscia, 59
kryteria wejścia, 23
kryteria wyjścia, 23, 43, 59
kwadranty testowe, 62

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 89 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

L

Lean IT, 29
lider przeglądu, 42
lista kontrolna, 54

Ł

łagodzenie ryzyka, 64

M

macierz ryzyka, 64
Mając/Kiedy/Wtedy, Patrz Given/When/Then
maszyna wirtualna, 71
metryka, 66
model kaskadowy, 29
model spiralny, 29
model V, 29
moderator (przegląd), 42
monitorowanie ryzyka, 65
monitorowanie testów, 21, 65

N

nadzór nad testami, 21, 65
narzędzie DevOps, 71
narzędzie do implementacji testów, 71
narzędzie do konteneryzacji, 71
narzędzie do pomiaru pokrycia, 71
narzędzie do projektowania testów, 71
narzędzie do standaryzacji wdrażania, 71
narzędzie do testowania niefunkcjonalnego, 71
narzędzie do testowania statycznego, 71
narzędzie do wykonywania testów, 71
narzędzie do zarządzania, 71
narzędzie testowe, 71
narzędzie wspomagające współpracę, 71
narzędzie zwiększające skalowalność, 71
niepoprawna klasa równoważności, 47
niezależność testowania, 26
niezależny zespół testowy, 34
niezawodność, 35

O

ocena ryzyka, 64
ograniczona tablica decyzyjna, 48
operacyjne testy akceptacyjne, 34

P

piramida testów, 61
plan testów, 23, 58
planowanie iteracji, 59

planowanie testów, 21
planowanie wydania, 58
podejście "cały zespół", 26
podejście do testowania, 58
podejście do testowania oparte na współpracy, 54
podstawa testów, 22, 24, 34
podstawowa przyczyna, 20
podział na klasy równoważności, 46
poker planistyczny, 60
pokrycie, 23, 24, 47, 48, 49, 51, 54
pokrycie 0-przełączeń, 50
pokrycie gałęzi, 51
pokrycie instrukcji, 51
pokrycie poprawnych przejść, 50
pokrycie wszystkich przejść, 50
pokrycie wszystkich stanów, 50
polityka testów, 58
pomyłka, 19
poprawka doraźna, 37
poprawna klasa równoważności, 47
poziom ryzyka, 63
poziom testów, 30, 34
pracochłonność testów, 59
prawdopodobieństwo ryzyka, 63
priorytetyzacja, 61
priorytetyzacja na podstawie wymagań, 61
priorytetyzacja oparta na pokryciu, 61
priorytetyzacja oparta na ryzyku, 61
procedura testowa, 22, 24, 61
proces przeglądu, 41
proces testowy, 21
programowanie ekstremalne, 29
projektowanie oparte na domenie, 29
projektowanie testów, 22, 30
protokolant (przegląd), 42
prototypowanie, 29
przedmiot testów, 17, 22, 34
przegląd, 39
przegląd formalny, 43
przegląd nieformalny, 43
przegląd techniczny, 43
przeglądający, 42
przejrzenie, 43
przejście, 49
przekonanie o braku defektów, 21
przenaszalność, 35
przesunięcie w lewo, 32
przypadek testowy, 22, 24, 61
przyrostowy model wytwarzania oprogramowania, 29

R

raport o defekcie, 24, 42, 69
raport o postępie testów, 23, 66
raport z testów, 66
reguła biznesowa, 48

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 90 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

rejestr ryzyk, 23
retrospektywa, 33
rezultat testu, Patrz wynik testu
rola związana z testowaniem, 25
rola związana z zarządzaniem testami, 25
ryzyko, 17, 63, 67
ryzyko produktowe, 63
ryzyko projektowe, 63

S

Scrum, 29
SDLC, 29
sekwencyjny model wytwarzania oprogramowania, 29
skrypt testowy, 22, 24
specyfikacja, 35
status testów, 67
sterownik, 24
strategia testów, 23, 58
struktura do testów automatycznych, 56
struktura do testów jednostkowych, 34
sumaryczny raport z testów, 24, 33, 67
symulacja, 34
symulator, 24
szacowanie na podstawie proporcji, 60
szacowanie testów, 59
szacowanie trójpunktowe, 60
szerokopasmowa technika delficka, 60
szkoda (ryzyko), 63

Ś

śledzenie powiązań, 24
środowisko testowe, 22, 24

T

tablica decyzyjna, 48
tablica stanów, 49
technika przeglądu, 39
technika testowania, 46
technika testowania oparta na doświadczeniu, 46, 53
testalia, 22, 23, 24
testowalność, 22
testowanie, 17, 18, 23

akceptacyjne, 34
akceptacyjne przez użytkownika, 34
akceptacyjne zgodności z umową, 34
alfa, 34
beta, 34
białoskrzynkowe, 36
czarnoskrzynkowe, 35
dynamiczne, 17, 40
eksploracyjne, 53
funkcjonalne, 34, 35
gałęzi, 51

gruntowne, 20
instrukcji, 51
integracji, 34
integracji modułów, 34
integracji systemów, 34
modułowe, 34
niefunkcjonalne, 32, 35
oparte na ryzyku, 63
pielęgnacyjne, 37
potwierdzające, 18, 36
przejść pomiędzy stanami, 49
regresji, 18, 36
statyczne, 17, 39, 52
systemowe, 34
w oparciu o listę kontrolną, 54
w oparciu o tablicę decyzyjną, 48
w parach, 22
w sesjach, 53

trójpunktowa analiza wartości brzegowych, 48
typ testów, 35

U

ukończenie testów, 22, 65
umiejętność, 25
Unified Process, 29
uogólniona tablica decyzyjna, 48
utrzymywalność, 35
użyteczność, 35

W

walidacja, 17, 39
warsztat tworzenia specyfikacji, 56
wartość brzegowa, 47
warunek dozoru, 49
warunek testowy, 22, 23, 54, 55
wczesne testowanie, 20, 32, 39
weryfikacja, 17, 39
wirtualizacja usług, 24
wpływ ryzyka, 63
współpraca, 54
wydajność, 35
wykonywalne wymaganie, 56
wykonywanie testów, 22
wykres spalania, 67
wynik testów, 68
wynik testu, 22
wytwarzanie oparte na cechach, 29
wytwarzanie sterowane testami, 29, 30
wytwarzanie sterowane testami akceptacyjnymi, 29,

30, 56
wytwarzanie sterowane zachowaniem, 29, 31

Certyfikowany tester

Poziom podstawowy

wersja 4.0.1 Strona 91 z 91 07.05.2025

© International Software Testing Qualifications Board © Stowarzyszenie Jakości Systemów Informatycznych

Z

zabezpieczenia, 35
zależność (priorytetyzacja), 61
zapewnienie jakości, 19
zarządzanie defektami, 68
zarządzanie konfiguracją, 68
zarządzanie ryzykiem, 62
zasada Pareto, 20

zaślepka, 24

zdolność do interakcji, 35
zestaw testowy, 24, 61
zgadywanie błędów, 53

Ż

żądanie zmiany, 24

